3D-PEIM 2023

Practical Challenges with Advanced IVR Solutions for Microprocessors

Michael J Hill PhD

Principal Engineer

Assembly and Test Technology Development

- Why use IVRs in microprocessors
- History
- Where are we today
- Challenges moving forward the 'exciting ones'
- Challenges moving forward the 'practical ones'
- Summary

Why Use Integrated VRs – 3 Reasons

Reason #1

NO IVR CPU Power = 300W @1V

CPU Current = 300APDN Resistance = $0.7m\Omega$ Power = I^2R Loss in PDN R = 63W

With IVR

CPU Power = 300W @2V

CPU Current = 150A PDN Resistance = $0.7m\Omega$ Power = I^2R Loss in PDN R = 16W

High power CPUs suffer very large I²R losses on input networks

Why Use Integrated VRs – 3 Reasons

Performance tradeoffs can be optimized when each core has its own supply

Why Use Integrated VRs – 3 Reasons

Motherboard VR capacity is wasted when MBVRs are used to provide granularity

Intel IVR History

2013

Package Integrated Inductors 100MHz Switching Frequency 8 Phase

Early Experiments On package VR ~2008

First Ultra High Volume IVRs 4th Generation Intel[®] Core[™] Processor Family Fully Integrated Voltage Regulator (FIVR)

Prior to 2008, fast switching regulators were 500KHz

Intel IVR Advancements

Moore's law drove core shrink, and with it, inductor shrink

Magnetics Modules

Magnetic Inductor Array Module

Magnetics needed for continued inductor density increases

Coaxial Magnetic Integrated Inductor

The importance of advanced magnetics will continue to grow

Moving Forward – Common IVR Focus Topics

Efficiency

- Heat must be removed pkg & building
- Loss not used for compute
- 100's of Millions of VRs x 1% is a lot of power
- High Input Voltage
 - System efficiency driver
- Fast response time at the load
 - MIM Density + VR Design
- Magnetic Materials
 - New, exotic materials
- New Topologies
 - VR and components

These topics are all very important but not the subject of today's presentation

intel

Practical Issues

Placement – where does an IVR go?

Traditional Designs

Choice of placement of the IVR creates many boundary conditions on the IVR circuit design

IVR Placement 3D Integration

3D Packaging

- All same options, plus many more
- Where do my IVRs go?
- Inductors, capacitors?

>100 Billion Transistors

Matching placement to IVR design critical for viability

Practical Issues Often Neglected

- Examples
 - Routing Challenges
 - Design complexity
 - Modeling complexity
 - Cross team execution
 - Production Test
 - Assembly
 - Yield Impact
 - EMI/RFI
 - Trimming
 - Burn in

The un-glamorous aspects of IVR integration can render a new topology unusable

Package Routing is a Huge Challenge

Examples –

- IVR to Core power
- Response time degrades with distance
- IVR Control signals
- IVR to IVR communication

Power plane and control signal routing severely limits IVR placement options

Can You Build 10's of Millions?

Each unit will have many IVRs

- My have 600+ Inductors per package
- Can Single IVR fail kill part?
- Manufacturing tolerances
- How do you know if all inductors are good?

Designs friendly to recoverability, testability and HVM component variation enable scalability

Complex Control Scheme Challenges

Trimming Common

- Examples
 - Amplifiers / Comparators
 - Bias voltages
 - Compensator settings
 - Sensors
 - Waveform generators
- Test Time
- Test Complexity
- Power on / debug

Designs not needing many trims or fuses are required for high IVR count products

Fundamentals - Non-Linear Control

- Many NL Control schemes in play
 - Old and new NL buck features
 - Highly complex switch capacitor designs
- Lack Fundamental
 - Stability metrics
 - Performance metrics
 - Theoretical frameworks

Most Non-Linear designs lack solid fundamental theoretical frameworks to guarantee performance

Fundamentals - Non-Linear Magnetics

- \bullet Density pushes high μ_r
 - Saturation effects
 - Large signal loss effects
- Traditional 'trial and error' inductor methods not feasible
- Creation and use of models require deep expertise

Magnetics models need advancements to improve usability and precision

- IVRs Are here to stay
- Many advances being made
- Be careful practical challenges make many new IVR ideas unusable
- Fundamental work still needed in many areas

All product and service plans, and roadmaps are subject to change without notice. Any forecasts of goods and services needed for Intel's operations are provided for discussion purposes only. Intel will have no liability to make any purchase in connection with forecasts published in this document. Code names are often used by Intel to identify products, technologies, or services that are in development and usage may change over time. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Product and technology performance varies by use, configuration and other factors. Learn more at www.intel.com/PerformanceIndex and www.intel.com/Perfor

The products and services described may contain defects or errors which may cause deviation from published specifications. Current characterized errata are available on request. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. Statements in this document that refer to future plans or expectations are forward-looking statements. These statements are based on current expectations and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statements. For more information on the factors that could cause actual results to differ materially, see our most recent earnings release and SEC filings at <u>www.intc.com</u>.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others. This document contains information on products and technologies in development.