

Inductor-Linked Multi-Output Switched-Capacitor Power Architecture for High Current Chiplets

Mian Liao⁺, Daniel Zhou⁺, Ping Wang, Minjie Chen Department of Electrical and Computer Engineering Andlinger Center for Energy and the Environment Princeton University ⁺M. Liao and D. Zhou contributed equally to the paper and the presentation

Power Delivery Challenges of High Current Chiplets

- High power, higher input voltage (48 V), lower output voltage (<0.5 V)
- Multiple individually regulated output voltages: 0.8V, 1.8V, 3.3V, etc.
- Significant variation in bus voltage (>40%) due to complicated PDN
- Sophisticated voltage regulation requirements: dynamics, ripple, noise
- Efficiency, power density, packaging, signal/power integrity

Power Delivery Solutions for Chiplet Systems

Low Power Low Conversion Ratio Capacitor-based

- IntAct: Off-chip VRM + in-substrate SwCap
- Input: 0.9V to 2.9V
- Output: 0.4V to 1.8V Power: 2.6W

P. Vivet *et al.*, "IntAct: A 96-Core Processor With Six Chiplets 3D-Stacked on an Active Interposer With Distributed Interconnects and Integrated Power Management," in *IEEE Journal of Solid-State Circuits*, vol. 56, no. 1, pp. 79-97, Jan. 2021.

High Power High Conversion Ratio Inductor-based

MPS Vertical Power Module

- Input: 4V to 16V
- Output: 0.5V to 1V
- Current: 120A

PRINCETON High Conversion Ratio Hybrid SwCap Multi-Output Designs

- Sullivan et al., "On Size and Magnetics: Why Small Efficient Power Inductors are Rare," 3D-PEIM'16. ٠
- Sullivan and Chen, "Coupled Inductors for Fast-Response High-Density Power Delivery: Discrete and Integrated," CICC'21. ٠
- Kyaw et al., "Fundamental Examination of Multiple Potential Passive Component Technologies ...," TPEL'18. ٠

UNIVERSITY

Magnetics : design flexibility & functionality

DC Intermediate Bus versus AC Intermediate Bus

1) Need on-chip inductors
2) Large bus capacitor & inductor
3) Tightly regulated intermediate bus

1) Integrated back-end w/ on-chip capacitors
2) No bus capacitor, coupled inductor links
3) Unregulated intermediate bus

Modular Building Blocks for the Inductor-Link Architecture

- High efficiency soft-charged front end generating multiple interleaved, unregulated alternating bus voltages
- Mix-and-match output stages with different switching frequencies and output voltages
- No bus capacitors, multiple inductorlink rails

Example Implementation of the Inductor Link Architecture

- Front-end: Dickson-like step-down architecture
- Back-end: Inductor-link switched cap rectifier

Front end:

- Efficiently convert 48V into pulsed 8V rail voltage
- Average rail voltage between 0V and 8V

Back end:

- Convert pulsed rail voltage into regulated dc voltage
- Output voltage between 0V and average rail voltage

Front end and back end separately controlled and separated regulated. One front-end can be loaded by multiple back-ends with different power handling capability.

PRINCETON Example Implementation of the Inductor Link Architecture

Multiple switching implementations are possible

Hard-charging

Soft-charging

UNIVERSITY

Multi-Rail Implementation with Full Soft Charging

• Fully soft-charged front end, higher power delivery capability, smaller current ripple

3D Packaging Concept for the Inductor-Link Architecture

On-Chip / In-substrate Coupled Inductor

 Bharath, K., Radhakrishnan, K., Hill, M. J., Chatterjee, P., Hariri, H., Venkataraman, S., . . . Srinivasan, S. (2021, 1 June-4 July 2021). Integrated Voltage Regulator Efficiency Improvement using Coaxial Magnetic Composite Core Inductors. Paper presented at the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC).

Prototype System Implementation

Operation Waveforms

48 V to 2 V average bus voltage, 252.5 kHz frontend frequency with hard-charging pattern

48-V to 1.3-V/140A in hard-charging mode with 72-ft³/min air flow from the bottom.

Measured Efficiency

High efficiency front-end inverter stage:

Full architecture efficiency:

Design Considerations of the Switch-Cap Rectifier

Design Considerations of the Switch-Cap Rectifier

"Fast switching limit" (low ESR caps)

Capacitors determine loss and v_o ripple

- Off-chip caps: ESR @ fsw = 10 MHz >> switch R_{ds(on)}
- If caps have low ESR (e.g. on-chip), charge sharing dominates loss and ripple

M. D. Seeman and S. R. Sanders, "Analysis and Optimization of Switched-Capacitor DC–DC Converters," in IEEE Transactions on Power Electronics

Design Considerations of the Switch-Cap Rectifier

PRINCETON

UNIVERSITY

Conclusion

48V Chiplet power delivery architecture with inductor link and multiple outputs

