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Power Delivery Challenges of High Current Chiplets
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Chiplets 3D-IC

• High power, higher input voltage (48 V), lower output voltage (<0.5 V)
• Multiple individually regulated output voltages: 0.8V, 1.8V, 3.3V, etc.
• Significant variation in bus voltage (>40%) due to complicated PDN
• Sophisticated voltage regulation requirements: dynamics, ripple, noise
• Efficiency, power density, packaging, signal/power integrity

0.8V

1.0V
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Power Delivery Solutions for Chiplet Systems
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P. Vivet et al., "IntAct: A 96-Core Processor With Six Chiplets 3D-

Stacked on an Active Interposer With Distributed Interconnects and 

Integrated Power Management," in IEEE Journal of Solid-State 

Circuits, vol. 56, no. 1, pp. 79-97, Jan. 2021.

IntAct: Off-chip VRM 
+ in-substrate SwCap

• Input: 0.9V to 2.9V
• Output: 0.4V to 1.8V
• Power: 2.6W

Low Power Low Conversion Ratio
Capacitor-based

High Power High Conversion Ratio
Inductor-based

MPS Vertical Power Module

• Input: 4V to 16V
• Output: 0.5V to 1V
• Current: 120AMPC22161

Tesla Dojo



High Conversion Ratio Hybrid SwCap Multi-Output Designs
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MLCC Capacitors

Power Inductors

• Sullivan et al., “On Size and Magnetics: Why Small Efficient Power Inductors are Rare,” 3D-PEIM’16.
• Sullivan and Chen, “Coupled Inductors for Fast-Response High-Density Power Delivery: Discrete and Integrated,” CICC’21.
• Kyaw et al., “Fundamental Examination of Multiple Potential Passive Component Technologies …,” TPEL’18.

Capacitors : high density, high Q Magnetics : design flexibility & functionality
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DC Intermediate Bus versus AC Intermediate Bus

5

Front 
End 

SwCap

Back End 
Buck

Back End 
Buck

Back End 
Buck

48V

Two-Stage Design with Capacitor-Link 
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Two-Stage Design with Inductor-Link

1) Need on-chip inductors
2) Large bus capacitor & inductor
3) Tightly regulated intermediate bus

1) Integrated back-end w/ on-chip capacitors
2) No bus capacitor, coupled inductor links
3) Unregulated intermediate bus

on-
chip



Modular Building Blocks for the Inductor-Link Architecture
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• High efficiency soft-charged front 
end generating multiple interleaved, 
unregulated alternating bus voltages

• Mix-and-match output stages with 
different switching frequencies and 
output voltages

• No bus capacitors, multiple inductor-
link rails

on-chip



“Inverter-Rectifier” Architecture
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VIN

V1 V2

Q1

Q2

Q3

Q4

C21

VOUT1

VOUT2

SwCap “Inverter”

SwCap “Rectifier”

A converter that generates 
pulsed voltage

A converter that 
“smooths” pulsed voltage

Leverage current smoothing 
inductor off-chip

Leverage high density capacitors 
close to Chiplet or on-chip

“Power lines”



Example Implementation of the Inductor Link Architecture
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• Front-end: Dickson-like step-down architecture
• Back-end: Inductor-link switched cap rectifier

Front end:
• Efficiently convert 48V into pulsed 8V rail voltage
• Average rail voltage between 0V and 8V

Back end: 
• Convert pulsed rail voltage into regulated dc voltage
• Output voltage between 0V and average rail voltage

Front end and back end separately controlled and separated 
regulated. One front-end can be loaded by multiple back-ends 
with different power handling capability. 



Example Implementation of the Inductor Link Architecture
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Hard-charged operation
Multiple switching implementations are possible

Hard-charging Soft-charging



Multi-Rail Implementation with Full Soft Charging
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V1

V2

V3

V4

4 x Interleaved Voltage Rails

• Fully soft-charged front end, higher power delivery capability, smaller current ripple

i1
Iin/4

i1



3D Packaging Concept for the Inductor-Link Architecture
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Requirements 48V-1V      >1A/mm2 <7 mm height    500A~1000A    5A/ns      90%  

Conversion Ratio Area Density Power/Signal/Thermal Transient Efficiency

Module #1
SwCap Front-End

Module #2
Vertical Inductor Link

Module #3
On-Chip SwCap Backend



On-Chip / In-substrate Coupled Inductor
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• Bharath, K., Radhakrishnan, K., Hill, M. J., Chatterjee, P., Hariri, H., Venkataraman, S., . . . Srinivasan, S. (2021, 1 June-4 

July 2021). Integrated Voltage Regulator Efficiency Improvement using Coaxial Magnetic Composite Core Inductors. Paper 

presented at the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC).



Prototype System Implementation
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Cascaded Boot-strap Gate Drive Circuits

Front-End 

Back-End 

Eaton CL1208
Coupled Inductor



Operation Waveforms
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48-V to 1.3-V/140A in hard-charging mode with 
72-ft3/min air flow from the bottom.

48 V to 2 V average bus voltage, 252.5 kHz front-
end frequency with hard-charging pattern



Measured Efficiency
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High efficiency front-end inverter stage: Full architecture efficiency:

Soft-charging for light load

Front-end/back-end codesign, lower 
conversion ratio for back-end



Design Considerations of the Switch-Cap Rectifier
Input: 8V pulsed at 22.5% duty cycle, 250~1000 kHz
Output: 1V to 1.5V (20% to 80% duty cycle)
Target: 10mV output ripple at 50 A output

First and second stage codesign:
• First stage provides unregulated pulsed voltage, but 

current ripple should be small
• Min. bus voltage for higher second stage duty cycle

On-chip four-phase SwCap
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Design Considerations of the Switch-Cap Rectifier

Capacitors determine loss and vo ripple
• Off-chip caps: ESR @ fsw = 10 MHz >> switch Rds(on)

• If caps have low ESR (e.g. on-chip), charge
sharing dominates loss and ripple

𝒗𝒐 =
< 𝒗𝒊𝒏 >

𝟐 − 𝒅

“Fast switching limit” (low ESR caps)

“Slow switching limit” (high ESR caps)

M. D. Seeman and S. R. Sanders, "Analysis and Optimization of Switched-Capacitor DC–DC Converters," in IEEE Transactions on Power Electronics



Design Considerations of the Switch-Cap Rectifier
Total Predicted Loss Loss Breakdown Predicted Ripple

Flying caps, 12 mm2Chip, 9mm2 Output caps, 9mm2

Best at high duty cycle

Dominated by 
conduction loss

Minimize losses at d=0.5

Process: 180 nm, 1.8V NMOS
Chip size: 3mm * 3mm
Cfly(per-phase) = 26 uF
Co(total) = 47 uF
Switch Rds(on)= 0.5/1 mΩ
Capacitor ESR = 0.9/0.3 mΩ



Conclusion
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48V Chiplet power delivery architecture with inductor link and multiple outputs

on-chip
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