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✓ People may forget to plug-in and find themselves out of battery energy later on

✓ The charging cables on the floor may bring tripping hazards

✓ Leakage from cracked old cable, in particular in cold zones, can bring additional hazardous conditions to the owner

✓ People may have to brave the wind, rain, ice, or snow to plugin with the risk of an electric shock.

✓ Wireless power transfer for electric vehicle charging address the drawbacks of plug-in charging.

✓ For a stationary WPT system, the drivers just need to park their car and leave.

✓ For a dynamic WPT system, which means the EV could be powered while driving
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Motivation:



✓ For stationary charging in the harsh weather environment, the driver does not need to drop off for charging.

✓ In the dynamic charging, the EV is possible to run forever without a stop.

✓ The battery capacity of EVs with wireless charging could be reduced to 20% or less compared to EVs with 

conductive charging.

✓As the battery size can be reduced, the cost of electric vehicle can be decreased as a result.
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Benefits of Wireless Charging

Fig. 1. A Taxi driver is happily staying in his car while charging up wirelessly.



✓ Wireless power transfer is a practical technology for charging electric vehicles.

✓As wireless charging for EV is growing where much research ranging from improving efficiency to improving 

misalignment has been done in this area.

✓ The reliability analysis for wireless charging of electric vehicles is missing in the literature.

✓ Reliability analysis of wireless charger is required as it is installed in varying environments in which harsh 

conditions could have adversely affected the performance of components.
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Introduction:

Fig. 2.  Typical inductive power transfer for charging electric vehicles



Fig. 3. Circuit topology of IPT system with LCC compensation network for charging EVs

4

Circuit and Block Diagram:

Fig. 4. Block diagram of the entire system
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Methodology: Continuous Markov Process

✓ Continuous Markov is a powerful method that is founded on multiple system states and transition phenomena

✓ Markov process is a well-developed technique to model complex reliability problems to simulate models in an 

analytical way

✓ Markov process stands on two fundamental principles: 1) state transition is constant and 2) any state transition 

does not depend on the previous state

✓ Several states can be defined based on the system transition direction and components involved to be modeled 

in the analysis process

✓ The continuous Markov process uses a constant state transition rate throughout the analysis period

✓ State transition in this process is defined by a constant failure rate

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑒−𝜆𝑝𝑡 (1)
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Reliability Analysis of Inverter

✓ The inverter is the fundamental part of wireless a charging system. Hence, its reliability assessment is the 

utmost requirement to evaluate the reliability of the whole wireless charging system

✓ Inverters are mainly composed of four elements that are primarily identified as IGBT, DC-link capacitor, 

Microcontroller, and Colling fan

Fig. 5. state diagram of an inverter composed of four non-similar components
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Result of Inverter Reliability

Components Failure rate (per year)

IGBT 𝜆𝑝 = 𝜆𝑏𝜋𝑇 = 0.3436 × 10−4

DC-link 

capacitor

𝜆𝑝 = 𝜆𝑏𝜋𝑣𝜋𝑄𝜋𝑇 = 0.447 × 10−4

Microcontroller 𝜆𝑝 = 𝜆𝑏𝜋𝑣𝜋𝑇 = 0.603 × 10−4

Cooling fan 𝜆𝑝 = 0.01041

TABLE 1.  FAILURE RATES OF INVERTER COMPONENTS

Fig. 6. Inverter reliability and states probability in a 20-year lifetime



Reliability Analysis of Compensation
Network:
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✓ The main reason to use compensation network is to reduce the reactive power, which lead to improving 

efficiency.

✓ LCC-Compensation network proved to be the most efficient topology as performs a current source for both 

primary and secondary

✓ LCC-Compensation efficiency is high at different load conditions.

Fig. 7. LCC-Compensation Network Primary

& Secondary Circuit

Fig. 8. Compensation Network State Diagram



Result of Compensation Network 
Reliability: 

9

The failure rate of the capacitor is calculated as follows:

𝜆𝑝 = 𝜆𝑏𝜋𝑇𝜋𝐶𝜋𝑉𝜋𝑆𝑅𝜋𝑄𝜋𝐸
𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

106ℎ𝑜𝑢𝑟𝑠
(2)

λb = Base failure, ,𝜋𝑇= Temperature Factor, 𝜋𝐶= Capacitor Factor, 𝜋𝑣 = Voltage Sterss Factor,

𝜋𝑆𝑅 = Series Resistance Factor, 𝜋𝑄 = Quality Factor,𝜋𝐸 = Environment Factor

The failure rate of the inductor is calculated as follows:

𝜆𝑝 = 𝜆𝑏𝜋𝑇𝜋𝑄𝜋𝐸
𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

106ℎ𝑜𝑢𝑟𝑠
(3)

Fig. 9. Reliability of the compensation network in a 20-year lifetime



Reliability Analysis of Coil:
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✓ The inductive coil is used and the frequency of the system is in the range of 35-85 kHz.

✓ The performance of the Inductive coil is similar to the RF transformer.

✓As the failure rate for the litz wire in high frequency is not available, the failure rate of RF transformer is used.

✓ The failure rate of the coil is calculated by eq. 1:

λ𝑝 = λ𝑏𝜋𝑇𝜋𝑄𝜋𝐸
𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

106ℎ𝑜𝑢𝑟𝑠
(4)

Where

λ𝑏 is base failure rate    ,    𝜋𝑇 is Temperature factor         ,      𝜋𝑄is quality factor     ,       𝜋𝐸 is environment factor
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Result of Coil Reliability:

Fig. 10. Reliability of coil in a 20-year lifetime



Reliability Analysis of Rectifier:
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✓ The rectifier is composed of four similar diodes.

✓As diodes are similar, the reliability analyses for rectifier behave as one component with two states.

✓ The failure rate of the rectifier is calculated by eq. 1:

λ𝑝 = λ𝑏𝜋𝑇𝜋𝑆𝜋𝐶𝜋𝑄𝜋𝐸
𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

106ℎ𝑜𝑢𝑟𝑠
(5)

Where

λ𝑏 is base failure rate    ,    𝜋𝑇 is Temperature factor    ,     𝜋𝑆 is electrical stress factor     ,   𝜋𝑄is quality factor , 

𝜋𝐶 is contact construction factor  ,    𝜋𝐸 is environment factor
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Fig. 11. Reliability of Rectifier in a 20-year lifetime

Result of Rectifier Reliability:
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Result of the Overall System Reliability:

Fig. 12. Reliability of the overall system in a 20-year lifetime

Component Failure rate per year

Inductor (Lf1,Lf2) 1.19 × 10−4

Capacitor (Cf1,Cf2) 0.406 × 10−4

Capacitor (CP1,Cp2) 0.289 × 10−4

Coil 11.65 × 10−4

Diode 33.288 × 10−6

TABLE 2. FAILURE RATES OF COMPONENTS IN

COMPENSATION NETWORK, COIL, RECTIFIER
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Conclusion:

✓ Continuous Markov process is utilized to determine the overall reliability of wireless power transfer setup for EV charging

✓ The system consists of five main sections, which are connected in series

✓ The reliability of each section has been calculated and multiplied to conclude the reliability of the overall system

✓ The results show an overall dependable lifetime of as long as twenty years with 66.31% availability

✓ Inverter and the coil are the most contributors of decreasing the reliability of the overall system, which their availability

after twenty year life time are 87.36% and 76.49% respectively.
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Future work

✓ Reliability analysis of different circuit topologies of wireless chargers.

✓Applying Monte Carlo simulation for analyzing reliability the system when controllers, communication are used.

✓ Investigating of wireless charger’s structures to provide parallel path to improve reliability.

✓ Reliability analysis of the system by considering foreign objects near the coil.

✓ Reliability analysis consider the weather and comparing the reliability of the system in different conditions.
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Thanks for your attention
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