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Why Efficient Motors/Drives are Critical for Energy ?

v End user energy consumption in USA
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v Motor driven source energy well
represented in each of the four
major US energy consumption
sectors.

v Motor systems account for

» ~50% of U.S. electricity

consumption.
» ~47% of global electricity

consumption.
v' >7 millions of electric vehicles
contributes a major transportation
share.



Electric Motors and Drives for EVs

** Electric Vehicle S Hioh offici
1gh efficiency.

v" Major components of BMW i3 > High power and torque

Battery . density.
o T » Compact: Size, Weight

Motor
v Challenges

» Motor performance is limited
by wire insulation and
impregnation thermal limit.

» 10°C above the thermal limit
reduces the life time by 50%.

Inverter . .
v" Possible solutions

T

& » Enhanced thermal management.
https://x

—éngineer.org/wp—éontent/uploads/ZO1 7/01/BMW-i3- .
anatomy.jpg?41ab8b&41ab8b » Lower electro-magnetic losses.
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Applications

v" Electric Motor/Drives

Electrical energy = Mechanical energy

¢ Transportation

v" Electrical vehicle
v’ Aviation
v Marine

¢ Industrial applications

+* Households

** Defense sector

https://www.norfolkwaterfrontvenues.com/manufacturer-of-
electric-motor/ v' Electrification of transportation

sector is a major drive



State of Art Cooling Technologies:
Electric Motors
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Cooling Method: Jacket Cooling

s Jacket cooling via spiral coolant channel 2016 BMW i3 motor

Coolant channel

Coolant- Water Ethylene Glycol 50/50 End-winding (20 mm X 5 mm)

Isometric view Side view

v' Inadequate to dissipate heat from the end winding and rotor
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Cooling Methods : Channels in Stator

“* Direct stator cooling methods

v Rectangular channels in the stator
core

v" Coolant: Ethylene-glycol 50/50 or
Engine oil

v" Coolant gets closer to the windings
and laminations

Tesla Model 3

v" Direct stator cooling channel may saturate the stator core.
v" Care needed to prevent disturbance in the magnetic flux in the stator core
v" Care needed to prevent the liquid from entering the air gap
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Cooling Methods : Spray Cooling

Outlet

Inlet

cooling tube

Rotor cooling

Spray cooling for end-winding
EL-Refaie et al.

Ludois et al. (ECCE, 2013)

(Univ. Wisconsin-Madison, Tech.
Rep. DOE-Wisconsin-6849, 2017)

* Cooler liquid 1s sprayed onto the end windings and/or rotor via nozzles
* Coolant 1s partially evaporated and need to be condensed
* High complexity; Non-uniform temperature
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Cooling Methods : DWHX

s Direct winding heat exchanger (DWHX)

v' DWHX first proposed by Semidey and Mayor (IEEE Transactions on Industrial

Electronics, 2014).
Copper Windings

Stator DWHX Flow Channel

e

Permanent
Magnets

Rotor

" DWHX wound

Schematic of DWHX
placement in winding motor

v DWHX can significantly reduce the thermal resistance between the winding
and coolant.

v DWHX may reduce the copper fill factor.
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Cooling Methods : DWHX

v" Semidey and Mayor (IEEE Transactions on Industrial Electronics, 2014).

ML DWHXs

Conductive . Flow Channel
Bulkhead _

Micro
Features

A Cross-Section of DWHX Micro-features in DWHX

v' 500 pm % 500 um microstud array
v' 5.14 kPa at a flow rate of 5300 cc/min
v 824 A/mm? - 24.7 A/mm?
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In-slot Cooling Technique

+»* Direct winding heat exchanger (DWHX)

Mayor et al.
(TIE, 2014)

v" DWHX significantly reduces thermal

resistance between the winding and coolant.

Water can be used as coolant.

DWHX offers high heat transfer area
between the winding-coolant increased.

Additive manufacturing enables mass
production of DWHX.

v" DWHX reduces copper fill factor.

Special end-winding design would be needed
to incorporate DWHX in a distributed wound
machine.

Non-conductive endcap need to be used to
prevent eddy current generation in the
DWHX .
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Integrated Thermal Management of Electric Machines/
Motor Drives

“* Axial Mounted — e

Segmented inverter

Heat IGBT Gate driver and C¢apacitor
sink modules control card

ORNL

Encapsulated stator-winding

Break assembly i

Protean Electrics: In wheel
traction application (60 kW,
1600 rpm)

Power electronics

Hub rotor
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Integrated Thermal Management of Electric Machines/

Motor Drives

++» Radial Mounted

Cooling inlet and outlet

Power electronics

Transmition

‘ Electric motor Coolin g_r:irf:uft

Audi e-tron: Liquid cooled
(125 kW)

Micro Nano Devices and Systems Lab @ Georgia Tech

14



In-Slot Motor Cooling
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In-slot Cooling Technique

+» Slot-liner confined evaporative cooling (EC)

v' EC dramatically reduces thermal resistance

liner wick-enhanced
liner

v

Wenming et al.
(Langmuir, 2020; TTE, 2021)

between the winding and the coolant

EC can be applied irrespective of the winding
layout, i.e., distributed or concentrated
winding

In case of EC, heat transfer area between the
winding-coolant can be significantly
increased.

In case of EC, required coolant and coolant
inventory mass can be significantly reduced.

For EC, dielectric coolant need to be used .

Special coolant delivery arrangement and
stator sleeve may be required to prevent
coolant leakage.
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In-slot Cooling Technique

+»* EC from side and middle liner (EC-SML)

DWHX

liner wick-enhanced
liner

EC DWHX

» Electro-thermal performance
of EC, DWHX, and EC-SML
has been compared with JC

wick-enhanced
liner

v' EC-SML offers high heat
transfer area between the
winding-coolant.

EC-SML

v" EC-SML reduces copper fill
factor.
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Electro-Thermal Model Coupling, Contact Resistances
and Winding Thermal Conductivity

+* Two-way coupling ¢ Contact resistance
10 aT 10 oT 9, oT : :
| kr— = | kar— k.= Equivalent air gap
ror < r’ 6r> T 250 < o7 ae) + 62( z 62) Interface thickness (mm)
+q""=0 Rotor lamination - magnet 0.005
MotorCAD Stator lamination - housing 0.0057
""""""""""" 1 | Winding - liner 0.045 |

Input . . .
> >Motor operating cond. Liner — stator lamination 0.015

» Gauge temperature

Y
Electromagnetic simulation

v In case of EC and EC-SML, there is no

SN VR o il

g Lo components contact resistance between the winding
@| Ler==essessspesssseees | .

g" Heat transfer @ an d | Iner.

e coefficient 3

2 Fluent

3
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| Lz Update temperaure] “* Winding thermal conductivity

kr ke kz

Comparison
» (Gauge-updated Cooling method
Cemerae & W/m.K) (W/m.K) (W/m.K)
JCand EC 0.50 0.50 166
DWHX and EC-SML 0.48 0.48 159

Results
»Overall performance
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Jacket Cooled BMW i3 Motor

+* 125 kW interior permanent magnet synchronous motor

stator  rotor winding

channel housing

impregnation

liner
Cu
End-
winding
Front view Winding Front view Spiral cooling channel

Number of turns per coil 9 v i
Number of strands in hand 12 ethylene-glycol 50/50
Total number of wire 108
Copper slot fill factor 0.33
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In-slot Cooling Techniques

+» Integration of in-slot cooling techniques in BMW i3 motor

CeQUIN I liner e wick-enhanced
Cu DWHX wick-enhanced PDMS liner

PDMS liner

JC DWHX EC EC-SML
v' ~4-folds heat transfer v' ~3.8-folds heat transfer v’ ~7.8-folds heat transfer
area increment area increment area increment
Number of turns per coil 9 Number of turns per coil °
Number of strands in hand 12 Number of strands_ in hand 8
Total number of wire 108 Total number of wire

72
. ~33%
Copper slot fill factor 0.33 Copper slot fill factor 0.22
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Numerical Modeling

+** Heat transfer modeling procedure

convection BC for JC convection BC for DWHX

aT 22
_ka = h(Tsurface - Tcoolant) Qevast = —NevaAsi-wind,o (Twind,o

Amitav, T. et al, ITherm, 2022
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Results and Discussion

+*»* Electro-magnetic performance

1.6 — .
oy —0—JC
= —A—EC
. —— DWHX
§ 14 —a—EC-smL
1.745 °
13— . . .
~ 0,
1.527 . 50%
]
3 A
1.309 o 11} —O—JC
2 —A—EC
= —v— DWHX
2 —<—EC-SML
o 9f
(7}
©
=
o
0.555 7L s . . P
118 218 318 418 518
Peak current (A)
=100
0,218
40 - - : -
118 218 318 418 518
0,000

EC-SML R Peak current (A)
Peak current =518 A

Speed = 4500 rpm, phase advance = 45 EDeg, h = 5000 W/m?2.K
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Results and Discussion

¢ Thermal performance o

Temperature (°C)

' 230

197

- 164
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o
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Max. stator temp. (°C)
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o o

©
o

. Ge——g—————4 ¥V
118 218 318 418 518
Peak current (A)

Speed = 4500 rpm, phase advance = 45 EDeg, h = 5000 W/m?2.K
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Results and Discussion

** Power loss and overall efficiency

5 T T
—0—JC
— —A—EC
E 4t —7— DWHX n= Pout
» —}—EC-SML Pout+PpctPactPcoretPmag
[72] 3 5
2 96
8
= 2} 8 _
8 2
Q ey '
o >95l
o1 Ppc = _i 6| 2 95 ’
. 3I°Ro[1 + ap(Ty, — Ty)] % |5 1.36%!
: : . s o |E |
= 4= —0—JC :
09} b D2 (wB)? E g 9} —A—EC : i
—~ AC T 128R,[1+ ar(T,, — T,)] e == gg"g’l\; ) i
207} 2 ==IECE
/)] 93 1 1 1 1 L
845l 118 218 318 418 518
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0.3}
0.1
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Speed = 4500 rpm, phase advance = 45 Edeg, h = 5000 W/m2.K
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Experimental Validation

*** Motorette test setup

Flowmeter

Liquid

Pump

Liquid
Q

Accumulator/
Phase

. Al
Coolant Reservoir 0““} Separator

? Thermocouple

(P Pressure sensor

© ? ? 'T‘eft? ? fb Liquid

Chiller

Section

Heat Vapor
Exchanger

Power DAQ .

%+ Cooling loop

[
—
E "
@ |
wn
ol
[

v" A 2 kW DC motorette with 8 slots is designed

and fabricated.

. . . . i - i Mutoree
v' Slot size was identical to the BMW i3 motor slot. | - EREE sctup

v" Solid Al has been used and motorette was hand-

. ) v Coolant (T,.= 76°C)
wound with 108 turns AWG 21 copper wire.
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Experimental Validation

\/ < . .
+*CFD/HT model ** Transient results comparison
Measured CFD/HT
o
~105 - E
el
=
Stator s
Q o5} d |
©
o
=
2
Winding S 85 o J
g
Symmefric = _ _
BC 2 Input power = 493W Input power = 588W
750 100 200 3000 100 200 300
Time (s)
. \/ o
3D CFD/HT computational ** Steady state results comparison
domain Average active-winding temperature
Flow rate
Power (W) (mL/min) 0
Measured CFD/HT
v" CFD/HT model has been modified to 702.9 330 113.80 113.80
mimic the motorette. 1106 440 126.82 126.82
1500.7 520 137.40 137.39
Amitav, T. et al, IEEE Trans on Transportation 1606.3 520 149.10 149.10
2001.6 640 145.20 145.19
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Motor Prototype

** Thermal Testing

Coolant reservoir  Data acquisition Flow meter

Heat exchanger Motor Power supply

2 kW DC power.

Micro Nano Devices and Systems Lab @ Georgia Tech
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Conclusions

v' Based on EC and DWHX, a new cooling concept, namely EC-SML has
been proposed.

v’ Electro-thermal performance of EC, DWHX, and EC-SML has been
numerically evaluated and compared with JC.

v' In case of DWHX and EC-SML, copper fill factor reduced by ~33%
compared to the JC and EC.

v' EC-SML provides best thermal performance followed by EC, DWHX, and
JC.

v EC provides the lowest power loss and the highest efficiency.

v DWHX and EC-SML provides higher power loss and consequently lower
efficiency, compared to the JC and EC.
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Challenges and Opportunities

v" Co-design: Electro-magnetic, thermal and mechanical performance

v' Innovative cooling technologies

v Borrow techniques from other disciplines

v' Efficient integration of motor, power electronics and drive

v" Encapsulation Materials- high conductivity, and temperature tolerant

v" Relevant Metrics- kW/Kg; kW/L; $/Kg
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