Inverter/converter power density and flexibility improvements through modularity and novel thermal management architecture

> Ian Byers Stuart N. Wooters, PhD Research and Development Marel Power Solutions, Inc.

OUTLINE

INTRO: POWER STACK DEFINITIONS AND BENEFITS MAREL CORE POWER PACKAGE, DIE DENSITY AND SPECIFICATION MITIGATING CTE MISMATCH IN DIE ATTACH ISOLATED VS NON-ISO PACKAGE, THERMAL AND ELECTRICAL BENEFITS RTH THEORETICAL SINGLE PATH VS SIMULATION MODULARITY AND FLEXIBILITY IN NUMBER OF PACKAGES AND PHASES BASELINE THERMAL SIM RESULT, DC CURRENT AND DISSIPATION TRANSITION TO AC, PEAK CURRENT AND OFF TIMES 3-PH POWER DELIVERY, DOE TARGETS VS MAREL IN OVERALL POWER DENSITY

POWER STACK OVERVIEW

INVERTER		MAREL's Power Stacks use a 'MODULAR' approach, enabling immediate, custom, and tuned solutions		
POWER STACK		Miniaturized > 75% smaller > 50% lighter	Integration of drivers, sensors, etc	
		Security of Supply Use any die Use any technology	Efficient > 30% less thermal losses vs competition	
Control board, S Housing, & Capa		Scalable 10kW to 1000kW+ 400V to 800V	Fewer Power Semis 25% to 50% fewer Or more power w/ same die	

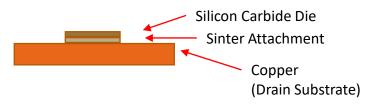
POWER SOLUTIONS


MAREL'S POWER SWITCH

Extremely Power-Dense and Sinter-able

1200V Silicon Carbide comparison, built with same die

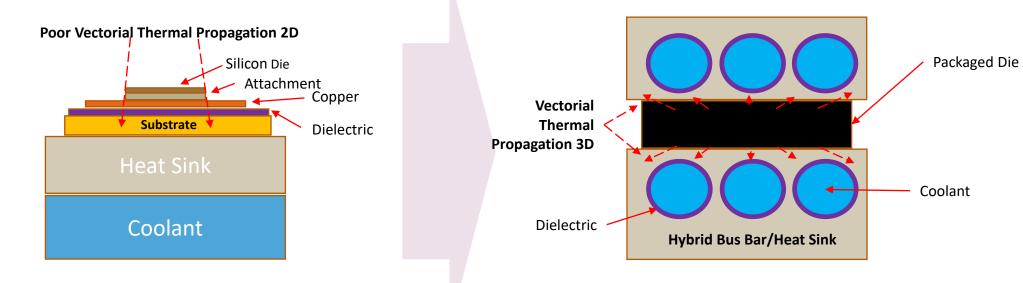
	Standard TO-247	Marel package	_
# of die	1	4	14.02mm
die attach method	solder drain wire bond source	sinter drain sinter source	
cooling	single-side	double-side	
Rds-on @ Tj=175C	28.8	7.2	c l
Rth junction-case	0.27 C/W	<0.02 C/W	
package dissipation @ Tj=175	208W	1280W	6.82
continuous drain current @ Tj=175C, Tcase=100C	85A	420A	2
package power path inductance	>15nH (typ)	<<1nH	
sinterable package	no	yes	
die flexibility	no	yes	



Density and performance of a custom power module in a flexible standard package

MITIGATING CTE MISMATCH

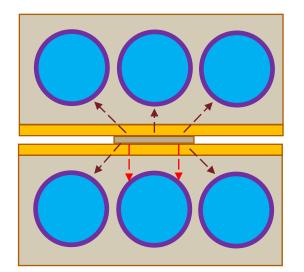
Copper expansion at a much faster rate will cause die delamination over time / temp cycling **Co-efficient of thermal expansion (CTE):**


Silicon Carbide: 3.8 ppm/C Silver Sinter: 20ppm/C Copper: 16.5 ppm/C

Alloy or laminate combination with copper to create better thermal expansion match: Tungsten: 4.5 ppm/C Molybdenum: 5 ppm/C

	20K cycles	32K cycles	110K cycles
	16%		
copper substrate	degrade	Fail	-
Marel substrate	0% degrade	0% degrade	0% degrade

ISO vs NON-ISO PACKAGES



Typical isolated discrete package or module cooling:

Dielectric inside package, very close to die Limited dielectric area Thermal bottleneck close to heat source Many attachment layers to degrade performance Thermal capacitance effect is limited Must create separate electrical paths (i.e. leads with parasitics) Non-Isolated package with Marel cooling technology: Dielectric as far from die as possible Drastically increased dielectric area Thermal bottleneck mitigated Very few attachment layers, all silver sintered Thermal capacitance effect is maximized Electrical and thermal paths are common, no separate leads to add inductance, resistance, etc.

THERMAL RESISTANCE (RTH) JUNCTION-COOLANT CONCEPT

Single die direct path calculation (conceptual):

Direct path calculation:

1 mm copper+ substrate @ 300 W/mK .92+(.88 avg) = 1.8 mm copper @ 385 W/mK .4 mm dielectric @ 170 W/mK (AlN example)

Rth = L / kA (L=thickness, k=conductivity, A=area)

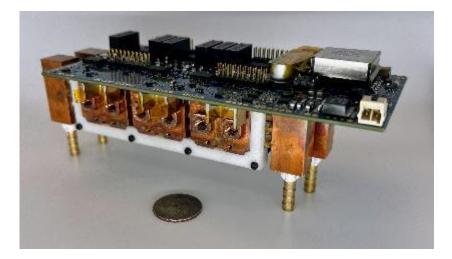
.001 / (300*.00535*.00443) = .14 K/W .0018 / (385*.00535*.00443) = .197 K/W .0004 / (170*.00535*.00942) = .047 K/W total = .384 K/W

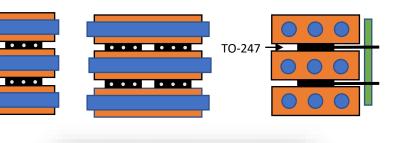
However, this is only one of many paths!

Example single die simulation shows: Rth = 38 K / 320 W = .119 K/W

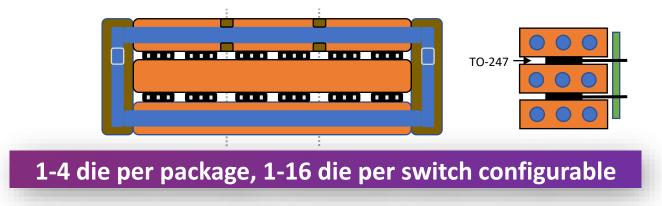
In a 4 die scenario, surface area will increase across the same material and thickness, as well as introduce even more complex thermal paths

Example 4 die simulation shows: Rth j-coolant = 111 K / (4*320) W = .086 K/W


Example 8 die simulation shows: Rth j-coolant = 111 K / (8*320) W = .043 K/W

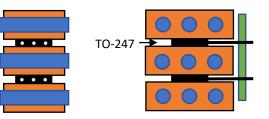

HALF-BRIDGE BUILDING BLOCK & COOLING CONCEPT

a 'MODULAR' approach, enabling immediate, custom, and tuned solutions



Any number of phases from the same building blocks

Double Sided Cooling


IARFI

STEADY STATE SIMULATION RESULT

8-die sim

- Inside half-bridge w/ manifold structure
- 10 L/min flow rate
- 8x SiC die, 320W dissipation each
- SiC die = 5.35mm x 4.43mm each
- Tj = 176C
- Tcase = 165C
- Tcoolant = 65C
- Rth junction-case = 0.009 C/W
- Rth junction-coolant = 0.043 C/W
- Amp/die = sqrt(320W/.0288Ohm) = 105A
- 420A @ 175C in Marel package

200 180 160 140 Temperature (Solid) [°C] 001 002 003 003 Die Temp C Case Temp C Coolant Temp C 60 40 20 0

0

1

2

3

4

5

Time (s)

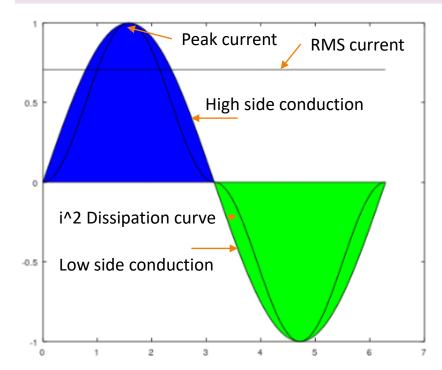
6

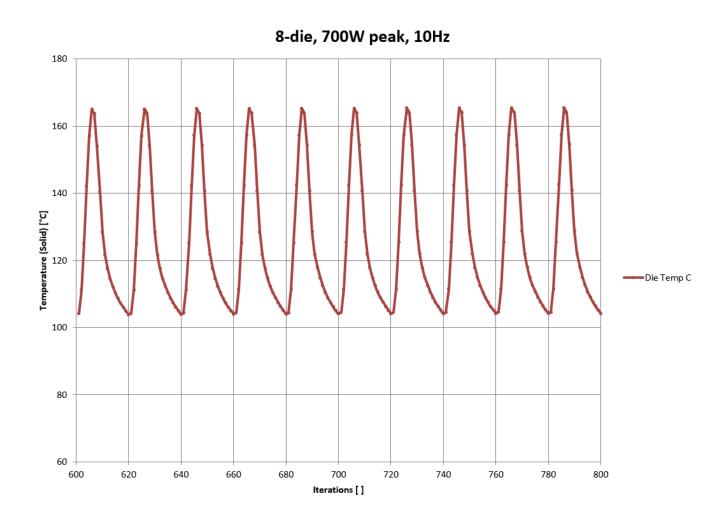
7

8

9

10


8-die x 320W = 2560W dissipation


ALTERNATING CURRENT (AC) SIMULATION RESULT

8-die AC sim

- Switch modeled with sinusoidal² dissipation curve for half cycle, then off for half cycle (see picture)
- 8x SiC die, 700W peak dissipation each
- 10 Hz operation, low speed is worse case
- Tj = 165C, Tcoolant = 65C
- If we assume roughly 15% switching loss:
- Peak Amp/die = sqrt(595W/.0288Ohm) = 144A
- RMS Amp/die = 144A / sqrt(2) = 102A

POWER DENSITY TARGETS

Power density in a 3-ph inverter

- Photo to the right is prototype Marel full 3-phase inverter, minus housing
- Estimated volume with housing is 2 Liter
- Using previous AC simulation as a baseline:
- RMS Amp per 8-die switch = 102A *8 = 816Arms
- With an 800V dc bus, 565.7Vrms
- 3 phase power = 816Arms * 565.7Vrms * sqrt(3) * 0.9 PF
 - ~= 720KW for a pure sinusoidal drive
- Power density ~= 720KW/2L = 360 KW/L

US Department of Energy targets for vehicle inverter

- Power Density: 100KW/L by 2025
- Cost: \$2.7/KW by 2025

