Nano Additive Manufacturing of Challenging Materials

Xun Wendy Gu

Mechanical Engineering and (by courtesy) Materials Science and Engineering Stanford University

100 um

Lightweight cellular materials

Bauer et al., Advanced Materials (2017)

Two photon lithography

Image from Nanoscribe

Direct laser writing

Microscale polymer structures

Deubel et al. Nature Materials (2004)

Inorganic coating on a polymer scaffold

Image from Montemayor et al., Adv. Eng. Mat. (2013)

Alumina coated polymer lattices

Hollow alumina

Bauer et al., PNAS (2014)

Meza et al., Science (2014)

Transform polymer into glassy carbon

Zhang et al., PNAS (2019)

Crook et al., Nat. Comm. (2020)

Novel resin chemistries for metals and ceramics

Yee et al., Advanced Materials (2019)

Main ingredients

- Photopolymer
- Photoinitiator
- Metallic precursor

Metallic nanoclusters

AU144

Properties of nanoclusters

Quantized energy levels

- Luminescent
- Photocatalytic
- Reduction in melting temperature (600-900°C)

Jin et al., Chem. Rev., 2016

Library of metallic nanoclusters

Library of metallic nanoclusters

Ag₂₈Pt₁(S-Adm)₁₈(PPh₃)₄

PtAg₁₂ Mono-Cuboctahedron

Library of metallic nanoclusters

- High two-photon absorption
- Long exciton lifetime of ~3 μs
- Initiates redox reactions
- Soluble in PETA monomer
- Stable under fabrication conditions


```
Ag<sub>28</sub>Pt<sub>1</sub>(S-Adm)<sub>18</sub>(PPh<sub>3</sub>)<sub>4</sub>
```

PtAg₁₂ Mono-Cuboctahedron

Photochemistry

Photochemistry

Printability

Nanoscale 3D printing

5 wt% Ag₂₈Pt resin

8 wt% Ag₂₈Pt resin

100 um

10 um

Li*, Kulikowski*, Doan* et al., Science (2022)

Luminescence is preserved

Nanocomposite micropillar in compression

True stress-strain response

True stress-strain response

Recoverability

Strain hardening in honeycomb structures

Li*, Kulikowski*, Doan* et al., Science (2022)

Cellular lattices for energy absorption

Triply periodic minimal surfaces

Jiang et al., Additive Manufacturing (2020)

TPMS lattice

Octet lattice

Nanocomposite lattices

Nanocomposite lattices

Jiang et al., Additive Manufacturing (2020)

Relative density: 0.2

Nanocomposite lattices

10 um

Comparison to other lattices

Li*, Kulikowski*, Doan* et al., Science (2022)

Comparison to other lattices

Comparison to other lattices

Rapid manufacturing

Previous fabrication route: Polymer with inorganic coating

Image from Montemayor et al., Adv. Eng. Mat. (2013)

Strong and stiff nanoporous nanostructures

Strong and stiff nanoporous nanostructures

Zhu et al., Nat. Comm. (2015)

Towards additive manufacturing of nano-hierarchical materials

Nanoporous glassy carbon

Pyrolysis at 500°C, Ar flow 20 wt% Ag₂₈Pt resin

Li*, Kulikowski*, Doan* et al., Science (2022)

Nanoporous glassy carbon

Pyrolysis at 500°C, Ar flow 20 wt% Ag₂₈Pt resin

Pyrolysis at 800°C under argon flow 20 wt% Ag₂₈Pt resin

~50% surface porosity

Li*, Kulikowski*, Doan* et al., Science (2022)

Nanoporous glassy carbon

Pyrolysis at 500°C, Ar flow 20 wt% Ag₂₈Pt resin

Pyrolysis at 800°C under argon flow 20 wt% Ag₂₈Pt resin

Cross-section

Li*, Kulikowski*, Doan* et al., Science (2022)

Nanoporous octet lattices

Li*, Kulikowski*, Doan* et al., Science (2022)

Protein photochemistry

Li*, Kulikowski*, Doan* et al., Science (2022)

Anisotropic porosity in printed silk

Li*, Kulikowski*, Doan* et al., Science (2022)

Nanomaterials for 3D printing

- Multifunctional
- Mechanical
- Thermal
- Magnetic

Additive manufacturing of metallic glass-oxide soft magnetic composites

Solution processed metallic glass-oxide core-shell particles

	1		•	•	
•	Simple	fabrication	proc	cess	

Optimized material properties

Design flexibility

Material selection and composite design

Amorphous metal

- Higher energy efficiency and lower core losses than crystalline magnets
- Good for higher switching frequencies

Gutfleisch, Willard, Bruck, Chen, Sankar, Liu, Adv. Mater. (2010)

Soft magnetic composite

Kollar et al., J. Mag. Mag. Mat. (2013)

Case for additive manufacturing

- Metallic glasses production requires high cooling rates
- Their brittle nature limit their machinability

https://metglas.com/company-history/melt-spinning-procress/

Case for additive manufacturing

• Complex-shaped metallic glass magnets could enable novel machine design

H-Segment yoke coil

Optimized stator design

Jung, J., & Hofmann, W. (2017). 11th GMM/ETG-Symposium (pp. 1-6). VDE.

Nanoparticle-enhanced absorptivity of Cu for AM

Tertuliano et al., Additive Manufacturing (2022)

Nanoparticle-enhanced absorptivity of Cu for AM

Tertuliano et al., Additive Manufacturing (2022)

Acknowledgements

Gu group students and postdocs

 Qi Li, David Doan, John Kulikowski, Ottman Tertuliano, Melody Wang, Abhinav Parakh, Mingqi Shuai, Luis Delfin, Andrew Lee

Financial and facilities support

- NSF-DMR 2002936/2002891
- NSF-CMMI 2052251
- ACS Petroleum Research Fund Doctoral New Investigator Award
- ARPA-E OPEN 2021
- Stanford Nano Facilities

<u>Collaborators:</u> George Schatz, Jason Zeman(Northwestern) Mitra Taheri, Anna Langham, Caleb Andrews, Li Ma (JHU) Juan Rivas, North Surakitbovorn (Stanford)