Materials for Additive Manufacturing Feasibility and Applications

Student: Gilad Nave

Department of Mechanical Engineering, University of Maryland

January 24, 2023

Prof. Patrick F. McCluskey

Motivation

- Power electronics applications
- RoHS Pb-Free
- Harsh environments
- Rapid and robust Additive
 Manufacturing applications

B. A. and G. M., "Electric Power Systems in More and All Electric Aircraft: A Review," IEEE, vol. 8, pp. 169314-169332, 2020.

F. Roccaforte, P. Fiorenza, G. Greco, R. Nigro, F. Giannazzo, F. Lucolano and M. Saggio, "Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices," *Microelectronic Engineering,* Vols. 187-188, no. 5, pp. 66-77, 2018.

TLPS Processing

Effects on Electrical Conductivity, and Structure Formation

Dynamic Resistivity Test (DRT) Apparatus and Test Design

DRT: Schematics Resistivity Curve Evolution

- <u>STAGE I:</u> Organic related evaporation, capillary forces.
 Beginning of percolation network.
- <u>STAGE II:</u> Melting of TLPS's Low Melting Particles (LMP). Closer to eutectic melting point. Liquid-state diffusion.
- **<u>STAGE III:</u>** Solid-state diffusion.

Resistivity = $\rho(T, A(T, t), Holding Time, \%LMP, \%Flux, LMP Selection, Flux Selection, etc..)$

DRT: Schematics of Effects

- <u>Heating Rate:</u> Has a major effect over stage I (a). In addition, when combining with specific flux and LMP selection, heating rate has an effect over stage II (b).
- <u>LMP Selection</u>: The LMP selection determines the temperature of the secondary major decrease in the resistivity curve (stage II).
- <u>Flux Selection:</u> Has the potential to completely shift the resistivity curve (stage I, II, and III).

DRT: Regression Model, Double Sigmoid Function

$$\rho(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_1}} + \frac{f_0-fmin}{1+\left(\frac{T}{\tau_2}\right)^{n_2}} + fmin}\right]\right\}$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_1}} + \frac{f_0-fmin}{1+\left(\frac{T}{\tau_2}\right)^{n_2}} + fmin}\right]\right\}$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_1}} + \frac{f_0-fmin}{1+\left(\frac{T}{\tau_2}\right)^{n_2}} + fmin}\right]\right\}$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_1}} + \frac{f_0-fmin}{1+\left(\frac{T}{\tau_2}\right)^{n_2}} + fmin}\right]\right\}$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_1}} + \frac{f_0-fmin}{1+\left(\frac{T}{\tau_2}\right)^{n_2}} + fmin}\right]\right\}$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_1}} + \frac{f_0-fmin}{1+\left(\frac{T}{\tau_2}\right)^{n_2}} + fmin}\right]\right\}$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_1}} + \frac{f_0-fmin}{1+\left(\frac{T}{\tau_1}\right)^{n_2}} + fmin}\right]\right\}$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_1}} + \frac{f_0-fmin}{1+\left(\frac{T}{\tau_1}\right)^{n_2}} + fmin}\right]\right\}$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_1}} + \frac{fmin}{1+\left(\frac{T}{\tau_1}\right)^{n_2}} + fmin}\right]\right\}$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_2}} + fmin}\right]\right\}$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_2}} + fmin}\right]$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_2}} + fmin}\right]\right\}$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_2}} + fmin}\right]$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_2}} + fmin}\right]$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} \left[\frac{fmax-f_0}{1+\left(\frac{T}{\tau_1}\right)^{n_2}} + fmin}\right]$$

$$P(T, A(T)) = \exp\left\{\frac{\log(R)A(T)}{L} + fmin}\right]$$

$$P(T, A(T)) = \exp\left\{\frac{\log($$

Experimental Data and Results

Stage-I Correlation to Packing Density

Stage-I Correlation to Packing Density and Flux Evaporation

No Observed Significant Change in Overall Cross-Section

Increase in Resistivity due to Oxidation

Experimental Control and Results

Counts

Conclusions

- The resistivity curve evolution of TLPS pasts was established and mathematically modeled.
- The main contributors to the electrical resistivity of the TLPS material are:
 - Pre-sintering packing density, and percolation
 - Evaporation of the organics
 - Melting of the LMP, their liquid-state diffusion, and attracting capillary forces
- The rapid development of electrical conductivity was demonstrated.
- Flux selection has a major effect over the curve evolution and the final resistivity of the TLPS material.
- In-based TLPS systems show better resistance to oxidations over long sintering times than Snbased TLPS systems.
- This study contributes to the optimization effort of using TLPS materials in AM application in remote locations, and power electronic applications.

Acknowledgments

These slides and research were supported and funded by:

- The University of Maryland, College Park
- **CALCE**: Center For Advanced Life Cycle Engineering
- NCMS: National Center for Manufacturing Sciences
- AMMP: Advanced Manufacturing, Materials, and Processes

CALCE CENTER FOR ADVANCED LIFE CYCLE ENGINEERING

Thank You! Any Questions?

