

Nonlinear Resistive Field-Grading in Medium-Voltage Power Modules

Zichen Zhang, Khai D.T. Ngo, and Guo-Quan Lu Center for Power Electronics System (CPES) The Bradley Department of Electrical and Computer Engineering Department of Materials Science and Engineering Virginia Tech

@ 3D PEIM Symposium, February 1 - 3, Miami, FL

Power Modules – the "Hearts" of Power Inverters/Converters

Efficiency, Power Density, Reliability, and Cost!

CPES's Three Strategies for Power Module Packaging

(2) Increasing T_j : e.g., from 175°C to 250°C.

Sintered-Ag:

- **Processing T** < 250° C
- ✤ Melting T > 961°C

- Thermal conductivity > 5X
- ✤ Electrical conductivity > 5X

\rightarrow increasing *q* by > 70%.

Ag paste and preform

(3) Field-grading at substrate triple points.

Polymer-nanoparticle composite coating

→ PDIV type by 50 – 100% w/o thickening the substrate $\rightarrow q$ type by 50 – 100%.

Medium-Voltage Power Devices/Modules and Applications

Fraunhofer IIS's 30-kV Modular Multilevel Matrix Converter for DC-AC/AC-DC

HVDC Thyristor Valve Building in China's 800 kV Power Station

Insulation: Key Challenge for Packaging MV Modules

Ionization and Electrical Discharge in Insulator

Gas/fluid exposed to high electric field:

Condensed phase exposed to high electric field:

Void in insulation

Field concentration at triple point \rightarrow PD

Cree/Wolfspeed 10 kV SiC Power Module

PD events degrade the insulation material \rightarrow dielectric fatigue \rightarrow dielectric breakdown

Partial Discharge Inception Voltage (PDIV) and How to Increase

Partial discharge inception voltage (PDIV) of a material or module is the lowest voltage at which partial discharges occur when the applied voltage is gradually increased from a lower value. (Analogous to the yield strength of a material.)

How to increase the PDIV of a module?

Geometric Field-Grading

- Thickening or stacking substrates
- Altering the shape of the electrode

Material Field-Grading

- ✓ Capacitive (high *k*), $D = (\varepsilon_o k) E \rightarrow E = D/(\varepsilon_o k)$
- ✓ Resistive (linear or <u>nonlinear</u>).

Earlier Work:

- > Theoretical
 - ✓ T. Christen, L. Donzel, and F. Greuter, *IEEE Electr. Insul. Mag.*, 2010.
 - ✓ L. Donzel and J. Schuderer, *IEEE Trans. Dielectr. Electr. Insul.*, 2012.
- > Experimental
 - ✓ L. Donzel, F. Greuter, and T. Christen, *IEEE Electr. Insul.* Mag., 2011.
 - K. Li, B. Zhang, X. Li, F. Yan, and L.
 Wang, IEEE Trans Comp Packaging Manuf Technol., 2021.

(EP + SiC) composite \rightarrow 30%

But, only limited success for improving PDIV.

Our Hypothesis and Approach

- Nonlinear conductivity or resistive behavior of polymer-matrix composite comes from thermionic emission and/or tunneling of electrons through the polymer phase.
- ➤ Use micron- or submicron-sized conductive particles as fillers in a polymer matrix → high solid loading → high viscosity → air-bubble trapping at the triple point on the module substrate.

Our Hypothesis and Approach

- Nonlinear conductivity or resistive behavior of polymer-matrix composite comes from thermionic emission and/or tunneling of electrons through the polymer phase.
- ➢ Use micron- or submicron-sized conductive particles as fillers in a polymer matrix → high solid loading → high viscosity → air-bubble trapping at the triple point on the module substrate.

Metal-Insulator-Metal Conduction Model (Simmons, 1960's)

$$J_{\text{MIM}}(E) = J_{\text{Thermionic}} \times J_{\text{Quantum Tunneling}}$$
$$= AT^2 \exp\left(-\frac{\phi_0}{kT}\right) \times \exp\left[\left(\frac{14.4E\gamma}{\epsilon_r(kT)^2}\right)\right]^{1/2}$$
$$\sigma_{PNC} = \frac{J_{\text{MIM}}(E)}{E} = f(E)$$

Development of a Polymer-Nanoparticle Composite (PNC)

Verification of Nonlinear Resistive Behavior of the Coating

Further Study of the Effect of Coating on PDIV

Effects of: (1) trench gap width, d; and (2) ceramic thickness, t.

21 mm

Experiment:

Parameter	Studied Value (mm)
Thickness, t (@ d = 2 mm)	0.38, 0.5, 1.0
Gap width, d (@ t = 1 mm)	2, 3, 5

Field Simulation:

Effect of Alumina Thickness, t (@ d = 2 mm)

• The PNC coating reduces the electric field intensity at the triple point by > 40%.

DIV Measurement:

 The PNC coating increased the substrate PDIV by 62% to ~100%.

Packaging of a 10-kV SiC Full-Wave Diode Rectifier Module

□ Key Features:

- ♦ Double-sided cooling; $\rightarrow P_d$ by > 40 %.
- ♦ $T_i > 200^{\circ}$ C with sintered-Ag device interconnection; $\rightarrow P_d$ by > 70 %.
- ♦ PNC-coated DBC substrates with 50% thinner ceramic (1.0 mm to 0.5 mm). $\rightarrow P_d$ to y > 40%.

Full-Wave Rectification of the 10-kV SiC Module

Effect of Curing Temp on PDIV Improvement at Elevated Temp V77 WERNIA

Sample	Coating	Max Curing Temp
Group 1	Ν	N/A
Group 2	Y	180 °C
Group 3	Y	230 °C

Substrates were encapsulated in a silicone gel.

Conclusion: the nonlinear resistive polymer-nanoparticle composite remains effective for field-grading or improving PDIV at > 175 °C.

Summary

Future Work

- Evaluate the reliability, both thermo-mechanical and voltage endurance, of the PNC-coated substrates.
- Further understand the physics of the nonlinear behavior and tailor the material properties for different applications.

Thank you for your attention!

Questions or Comments?

Acknowledgements:

- Funding from ARPA-E (DE-AR0001008)
- Dr. Jiayu Xu and Mr. Carl Nicolas

Climate Change and Power Electronics

- WHO: "Climate change is the biggest health threat facing humanity, threatening the progress in development, global health and poverty reduction made over the past 50 years."
- Strong and sustained reductions in emissions of carbon dioxide (CO₂) and other greenhouse gases would limit climate change."
- Power electronics plays a crucial role in the solution to limit climate change by (1) connecting renewable sources to the grid and (2) powering the transportation electrification revolution.

