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Navy Power Electronics Requirements

Future Naval MVDC Systems

PD ≈ 0.01 MW/m3

HVDC VSC (±400 kV, 500 MW ) in 
remote SUBURBAN areas

PD > 1 MW/m3

Power Density is the critical 
parameter for DoD systems!

High Temperature (>250 °C)

Lower 

Resistance 

(> 10x)

Higher 

Frequency 

(>10x)

High

Voltage 

(1-40 kV)

Major Device Class

Applications
Voltage Power

Junction 
Temperature

600-1200V 10-500 kW 250-300oC F-35 Joint Strike Fighter More Electric Aircraft

288-900V
200-

300kW 150-250oC 4 ton wheeled vehicle 

1200-1700V
700-

900kW
150-250oC 

15 ton  combat vehicle, also*

(*ship service ≈ 100-250kW, 150oC,  submarine > 150oC)

6.5-11kV
80MW 150oC

Two-level inverter for Electromagnetic Arrest and Launch

Three-level inverter for 4.16kVAC distribution for destroyer

Five-level inverters for 13.8kVAC distribution for carriers

11-20kV
> 80MW 150oC 12kV DC distribution distribution 

Three-level inverter for 13.8kVAC distribution for carriers

12-25kV 250-400oC Pulsed Power Switch for EM Railgun and Active Armor
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New Materials for Future Power Devices

EC

EV

EG(Si) = 1.1 eV

Wide Bandgap
Semiconductor:

EC

EV

EG(GaN) = 3.4 eV

EC

EG(Ga2O3) = 4.9 eV
Si 4H SiC GaN b-Ga2O3 Diamond

Bandgap (eV) 1.1 3.26 3.4 4.9 5.5

Breakdown E 
Field (MV/cm)

0.3 2.5 3.3 8 10

Power Figure of 
Merit ~ µEMAX

1 160 870 3444 246613

WBG UWBG

Typical 
Semiconductor:

Ultra-Wide Bandgap
Semiconductor:• Power devices need to block high voltages, then have low 

resistance when conducting in the ON-state
• Semiconductor’s wider bandgap à higher blocking voltage
• However… cannot simply use glass to make a power device, 

because you can’t turn it ON.  (Need a semiconductor that 
can be doped n-type, p-type, or preferably both)

Devices made with WBG/UWBG materials offer enormous advantages for power electronics

Si 4H-SiC GaN β-Ga2O3 Diamond

Bandgap (eV) 1.1 3.26 3.4 4.9 5.5

Electron Mobility (cm2/V-s) 1350 900 1200 300 2000

Critical Field (MV/cm) 0.3 2.5 3.3 8 10

Thermal Conductivity (W/m-K) 130 370 130 30 2000

Baliga Figure of Merit 1 160 870 3444 24661

WBG UWBG
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How WBG/UWBG Devices Improve SWaP
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b-Ga2O3

GaN

Si

SiC

How WBG/UWBG semiconductor devices can improve size, weight, 
and power (SWaP) of systems:

• WBG/UWBG devices enable thinner blocking layers
• Lower ON-resistance
• Shorter transit time (time is takes for an electron to cross 

the device)
• More compact power systems 

• Lower conduction losses
• Lower switching loss à Higher switching frequency
• Smaller volume, Volume ~ 1/frequency

Total Power Losses = Switching Losses + Conduction Losses

Conduction power loss ~ RON ~ 1/(µ Emax)

VDS

Switching power losses ~ RON x Cin= 1/fB

3

IDS
Switching

Conduction

System Level Impact: Compact Power Conversion for improved SWAP-C (Vol. ~ 1/ƒSW)
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Shipboard Power Conversion

Future Power Payloads:
- Future Radar

- Rail Gun

- Hybrid propulsion

- Solid State Laser

- Future EW systems

- Future Illuminator

- Hull Sensor

- Vertical Launch System

- Laser Weapon System

- Multi-Function Towed Array

- Etc.

20kV switches needed for 
13.8kV AC Power 
Distribution

Large Surface Combatant Displacement vs. Power Demands 
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15 kT

Displacement (kT)

10 kT

145 MW 

80 MW

Curre
nt E

lectr
ic 

Arch
ite

ctu
re

10 MW

DDG-51 Flt III
4160V

DDG-51 Flt IIA

440V

DDG-1000

4160V

DDG(X)
13.8 kV

CVN (13.8kV)

Compact high voltage power 

systems are required for future ship 

demands → WBG/UWBG are 

advantageous for high voltage 
components
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The LRU Concept

DDG 1000 Power Control Module

PEBB1000 Vision:
• All 4 H-bridges

• No External Water 
Connectors

• Simplified Electrical and 

Mechanical Connections
• Sailor Safe

• Hassel Free Installation 
and Maintenance

Si-based
(current)

WBG
(next)

UWBG
(long term)

Enabled by:
• High voltage/high speed WBG switches
• High power/high frequency magnetics
• Advanced control architectures

UWBG-based PEBB could:
• Require 10X fewer LRUs for the same power system
• Output 10X more power for the same module size
• Some combination of the two (optimization of 

space and power handling)



Distribution Statement A. Approved for Public Release. Distribution Unlimited 2/18/2023 7

Magnetics in Power Conversion

New materials research and advanced manufacturing strategies are required!

WBG devices can be accommodated with 
improvements to existing materials
UWBG devices require new materials

Magnetics: key factor determining size, weight, and efficiency 
of power converters

Multiple functions and requirements
Transformers (high permeability): voltage and current 
scaling and sensing
Inductors (low permeability): energy storage, circuit 
resonance, filtering, current limiting
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Solid State Circuit Breaker

WBG/UWBG-based circuit breakers or fault 
current limiters can turn off MV systems 
>100X faster than SOTA with lower loss 

DC power systems to not have a natural “zero crossing” for rapid fault detection and 
clearing – increased likelihood of arcing, necessitating new protection architectures

Mechanical switch 
(current)

Solid-state protection 
(future)

WBG  

UWBG  
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Topic 1: Device-Scale Thermal Management
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Thermal Management of GaN Electronics

10

Thermal Characterization:
In-house:

• micro-Raman thermography

• Infrared Imaging 

• Steady-state 

thermoreflectance

• Transient thermoreflectance

In collaboration:

• Gate resistance thermography

• Scanning Thermal Microscopy

Optimization via Modeling:
3D GaN HEMT model

• Understanding of localized 

effects that are difficult to 

characterize 

experimentally

• Band structure

• Electric field spreading

• Temperature depth profiling 

• Thermal interface modeling

Transient TRI

Tadjer and Anderson,
Ed., Elsevier 2022.

Steady State TRI

Edge Termination
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NRL Diamond Growth Capability

5 Microwave Plasma CVD Reactors for growth  + 1 for surface hydrogenation

Electrochemical etching process for epitaxial film lift-off
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Advances in Diamond Integration

Improved NCD thermal conductivity by 
substrate nanopatterning OR seed size 
control

Improved Uniformity of NCD Film

Low Stress, Uniform, Wafer-Scale Diamond CVD Growth

AlGaN

GaN

Source Drain
Highly p+ 

Diamond

2DEG

Metal

P-type Diamond Gate

Top Side NCD Integration

GaN

AlGaN

S D

G
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SiNX

Ni/Au
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Thermal Management of Ga2O3 Electronics

Surface-activated bonding of Ga2O3-Si

Exfoliated Ga2O3 transferred to diamond

65 W/mm DC,
better than GaN!

AlN-capped Ga2O3 FET

Ga2O3 Book, 2018
UF and NRL
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Topic 2: Vertical GaN Power Device Manufacturing
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Vertical GaN for 5-20kV Power Switches

Substrate Characterization

2” PiN Diode “pilot production”
1.2kV-6kV, 5-10A rating 

(ARPA-E OPEN+ Program)

P-type Doping by Ion Implantation

Implanted PiN and JBS Diodes

Challenges for any Vertical GaN Device 

Device B1 Device B2

230 µm

EL images – substrate effects

Hyperspectral Imaging of vertical diodes
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1.2kV and 3.3kV GaN Foundry

NRL/Sandia ARPA-E Program:
1.2-6kV PiN Diode Manufacturing
5-20kV PiN Diode Demonstration

Sandia 
Diode fab for MV 

grid protection 

NRL/NIST 
Foundry diode 

process 

Sandia Epi 

5 kV 

10 kV 

20 kV 

1.2 kV 

3.3 kV 

6.5 kV 

20kV GaN Electromagnetic Pulse Arrestor for Grid Reliability

ØElectromagnetic pulses are a 
threat to the grid
• Very fast E1 component (< 1 ms)
• Unaddressed by current SOA 

technology (LSAs)

ØTransient protection is 
needed for MV grid-
connected systems
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1.2kV GaN Foundry

Delivery #7
SG1383B

(standard epi)

Raw Data Device F Yield Failure Statistics

Delivery #8
SG1410

(Ammono substrate)

Incoming Metrology (Epi Pass/Fail)
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2E19,300nm Anode1E18,500nm Anode

Reverse I-V
(>1kV w/ avalanche capability)

Forward I-V
(>15A pulsed current)

100 µm
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500nmBV=650V 300nmBV=1150V

Wafer-Scale, Planar Device Process (”Pilot Production”) 
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Next Steps: Machine Learning, 3.3kV Devices

3.3kV-Class Device DemonstrationConvolutional Neural Network to Predict Device Performance from Incoming Metrology

91% Accurate Predictions

Correlation of optical profilometry to device performance Incoming Wafer Screening & Yield Prediction Algorithms
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Packaging Development

“A” Device
(16 bond wires)

“F” Device
(~64 bond wires) • Kyocera surface mount package (standard part)

• Mounting and wire bonding completed at Integra 
(commercial source)

• Option for hysol encapsulation
• Package is ok for 1.2kV, evaluating viability for 3.3kV 

(limited by 0.03” gap between anode and cathode pads)
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Topic 3: Ultrawide Bandgap Materials
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Ga2O3 Materials Status/NRL Capability

Zhang et al., APL Mater. 7, 022506 (2019).

X-Ray diffractionRecord Hall mobility

FWHM
41 arcsec

• High performance Ga2O3 MOCVD from ONR 

STTR (Agnitron Tech) uniquely developed for 

the Navy

• High quality Ga2O3 (record high mobility: 176 

cm2/Vs at RT

• High growth rate and n-type doping control 

(1015-1019 cm-3)

0
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Year of Commercialization

Si

SiC

GaN

4” BGO in 2018 
(<10 years)

Tadjer et al., J Phys D: Appl Phys 54, 034005 (2020)

Delivery/Installation at NRL Fall 2021
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Recent Ga2O3 Device Demonstrations

Vertical Devices
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• Vertical Schottky diodes (collaboration with UF), first demos with epi thickness > 10 μm 
• No possibility for p-type Ga2O3: need heterojunction p-n diodes (collaboration with UAB)

Lateral Devices

First demonstration of 
AlGaO/GaO HFET with Si 
delta-doping by O3-MBE

VBR>1kV

Rsh
(/sq)

Mobility 
(cm2/Vs)

Ns

(cm-2)

5857 95 1.12e13

Tadjer et al., J Vac Sci Technol. A 39, 033402 (2021)
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This Work

VBR = 2.3 kV
20 μm epi

30 μm epi, 1016 cm-3

10 μm epi
2x1016 cm-3

First demonstration of Ga2O3 HFET via 
Agnitron’s High Growth Rate MOCVD

µ=170 cm2/V·s

Tadjer et al., J Phys D: Appl Phys 54, 034005 (2020)
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Topic 4: Optically Triggered Devices
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EMI Issues

A power system cannot operate at the program metrics (>10 kV @ 500 kHz) without an optically isolated gate drive:
• Ultra-fast, high-power switching causes electromagnetic interference (EMI) à false triggering and/or failure
• Driving the gate of the high side switch is difficult, because it is referenced to high voltage node
• Optical isolation decouples the input from the output of the device

Example: Half-Bridge Converter

Gate 
Drive

Gate 
Drive

EMI
Sources of EMI:
• High di/dt, dv/dt switching
• Large motors
• Lightning
• Electromagnetic pulses

High side switch

Optical isolation of the gate enhances resiliency 
and reduces complexity of power systems

Optical 
Isolation

Example Solution: 
Photoconductive Semiconductor Switch (PCSS)

Expected to be significant research topic (ARPA-E ULTRAFAST program)

A power system cannot operate at >10 kV @ 500 kHz without a well-isolated isolated gate drive:
• Ultra-fast, high-power switching causes electromagnetic interference (EMI) → false triggering and/or failure
• Driving the gate of the high side switch is difficult, because it is referenced to high voltage node
• Optical isolation decouples the input from the output of the device
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Photoconductive Switch Technology

high voltage switch

Devices: Spark Gaps
Power 

MOSFETs
IGBTs PCSSs

High Voltage ✔ ✔ ✔ ✔

High Current ✔ ✔ ✔ ✔

Low Rise Time ✔ ✖ ✖ ✔

Low Jitter ✖ ✖ ✖ ✔

High Rep Rate ✖ ✔ ✔ ✔

Advantages of PCSS:
• High voltage (tens of kV)
• High current (hundreds of amps)
• Direct drive (semiconductor laser)

PCSS Applications:
• Direct drive of solid-state HPM sources
• MVDC/HVDC Power conversion
• Wireless power transmission

Advantages of WBG PCSS
• 8kV blocking
• 10A/W Responsivity
• 16A Peak Current Demonstrates

Photoconductive Switch 
with High Sub-Bandgap 
Responsivity in Nitrogen-
Doped Diamond



Distribution Statement A. Approved for Public Release. Distribution Unlimited 2/18/2023 26

PCSS for Efficient Power Conversion

• Photoconductive Semiconductor Switch (PCSS) are optically triggered electrical switches, capable switching: multi kilovolt 
(kV), multi kiloampere (kA), at sub nanosecond (< ns) speed 

• PCSS can be stacked in parallel and series to achieve virtually unlimited current and voltage capability
• Allow optical control of complex, high power switching circuits with electrically isolated drive 

• Robust high side gate drive: dramatically simplifies high side gate drive.  PCSS prevents reference voltage swing.
• EMI Rugged: Prevent false triggering under electromagnetic interference (EMI)

Half-Bridge Converter

Example Application: PCSS Half Bridge Converter:
• Electrically isolated high side gate drive
• High voltage (>20kV)
• High Frequency operation (>100kHz)
• Reduced SWAP: Co-package PCSS with 

commercial off-the-shelf COTS Laser Driver

Pulse Width Modulated Sinusoid

>20 kV

0 kVLight 
Source

GaN PCSS

Output Power

Input Power
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UWBG Technology Development Roadmap
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2013

You are here

COTS UWBG components?
1 MW/1GHz power conversion?
>100 W/mm RF MMICs?
Integrated RF and power modules?
1000C electronics?
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4” BGO in 2018 
(<10 years)

1st Ga2O3 MOSFET  
(>1200 citations)

DARPA Thermal Management (NJTT/IceCool)
Sandia AlN/AlGaN LDRD

AlGaO/GaO HFETs w/ >200mA/mm
Diamond 2DHG w/ NSH >1E13
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Si Technology R&D – Still Relevant!

Highly specialized diode structure
• Used in inductive storage circuits to 

generate high voltage nanosecond rise 
time pulses by exploiting the Ldi/dt effect

• Different operating space than typical 
power diode

• Need to store charge AND discharge 
quickly – typically mutually exclusive 
design criteria

P+ 
Metal 

P- 

N- 

N+ 
Metal 

Drift Step Recovery Diodes

Many potential applications in pulsed power 
circuits
• Short pulse radar
• Accelerators
• Medical
• Ignition
• Plasma processing
• Emissions control

SiC DSRDs are also of interest – smaller die, less stacking, more “snappy” switching
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Summary

• Si R&D – still relevant!

• SiC devices are maturing, but still basic material work for >20kV and novel device opportunity

• GaN power devices are emerging and scaling to 5-10kV and >100A

• Ga2O3 technology is rapidly scaling – emerging opportunities

• AlGaN, AlN, and Diamond are emerging materials

Thermal Management is essential for ALL 
power semiconductor devices

• Near-junction temperature control in GaN
devices

• Thermal management of Ga2O3 devices

• Increasing problem for WBG/UWBG 
devices – lower specific on-resistance →
smaller die for same performance →
increased power density

Advanced integration approaches are 
required to realize optimal performance at 
the system/module level

• Heterogeneous/monolithic integration of 
power switch and control circuitry

• Microfluidic cooling for thermal 
management

• Active interposer
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