

## Towards next generation power module package technology blooming

IDAKA, Shiori / Mitsubishi Electric Europe B.V.

02.02.2022

|                     | 01 | Introduktion     |
|---------------------|----|------------------|
|                     | 02 | Tests and Models |
| Z                   | 03 | Chips            |
|                     | 04 | Package          |
| Image: Organization | 05 | Challenges       |
|                     | 06 | Summary          |

00





Mitsubishi Electric Corporation is an independent company like other Mitsubishi companies, and is separately owned, managed, and operated.

With the exception of other companies in the Mitsubishi Electric Group, it bears no legal affiliation with other companies that have the word "Mitsubishi" in their names.



| Head Office<br>Location: | Tokyo Building, 2-7-3 Marunouchi, Chiyoda-ku, Tokyo<br>100-8310, Japan |                                  |                         |                           |
|--------------------------|------------------------------------------------------------------------|----------------------------------|-------------------------|---------------------------|
| President &<br>CEO:      | Uruma Kei(Inaugurated on July28, 2021)                                 |                                  | Europe                  | Japan                     |
| Established:             | January 15, 1921                                                       | North America<br>14<br>companies | 24<br>companies         | 96<br>company             |
| Revenue:                 | ¥4,191,443 million                                                     | Central & South                  | Middle East &<br>Africa | Asia<br>(excluding Japan) |
| Paid-in Capital:         | ¥175,820 million                                                       | America<br>2                     | - companies             | 64<br>companies           |
| Shares Issued:           | 2,147,201,551 shares                                                   | company                          | Outside Japan 109 comr  | Oceania<br>1              |
| Total Assets:            | ¥4,797,921 million                                                     |                                  | Japan 96 companie       | s                         |

(As of March 31, 2021)

## 00 About Us



## PRODUCTS & SERVICESOF MITSUBISHI ELECTRIC CORP.



**BUILDING SYSTEMS** 



ENERGY SYSTEMS



TRANSPORTATION SYSTEMS



HOME PRODUCTS



AIR CONDITIONING SYSTEMS



SPACE SYSTEMS



FACTORY AUTOMATION SYSTEMS



INFORMATION/COMMUNICATI ON SYSTEMS



AUTOMOTIVE EQUIPMENT



PUBLIC SYSTEMS



SEMICONDUCTORS/DEVICES













\*2 Mitsubishi Electric solar-power generation system discontinued on March 31, 2020.

Development of these modules and applications has been partially supported by Japan's Ministry of Economy, Trade and Industry (METI) and New Energy and Industrial Technology Development Organization (NEDO). \* The vear and month listed are based on press releases or Information released during the product launch month in Japan.

## About Us





![](_page_7_Picture_4.jpeg)

![](_page_7_Picture_5.jpeg)

![](_page_7_Picture_6.jpeg)

![](_page_7_Picture_7.jpeg)

#### December 2012 Launched CNC drive unit equipped with SiC power module

![](_page_7_Picture_9.jpeg)

## 2015

January 2015 Launched power conditioner for PV equipped with full SiC-IPM\*2 June 2015

![](_page_7_Picture_12.jpeg)

Railcar traction system with full SiC power modules installed in Shinkansen bullet trains

## 2016

April 2016 Launched Super mini Full SiC DIPIPM™

![](_page_7_Picture_16.jpeg)

May 2016 Launched room air conditioners with full SiC DIPIPM™ in Japan

![](_page_7_Picture_18.jpeg)

October 2016 Launched package air conditioners with full SiC DIPIPM™ in Japan

![](_page_7_Picture_20.jpeg)

![](_page_7_Picture_21.jpeg)

![](_page_8_Picture_0.jpeg)

# 01 Introduction

What is packaging?

![](_page_9_Picture_1.jpeg)

#### Interface

To connect semiconductors to outside systems mechanically and electrically.

#### Protection

To protect semiconductors from external influences (stress, electrostatic, chemicals, humidity, dust...)

![](_page_9_Picture_6.jpeg)

To configure the desired "switch" with a combination of multiple semiconductors in standard outlines.

![](_page_9_Picture_8.jpeg)

#### **Thermal management**

To dissipate the heat generated in semiconductors to the outside

![](_page_10_Picture_1.jpeg)

![](_page_10_Figure_2.jpeg)

| parts                | material             | function                                                  |
|----------------------|----------------------|-----------------------------------------------------------|
| a) Power chips       | Si, SiC etc          | Switching                                                 |
| b) Silicone gel      | Silicone             | Protect power chips                                       |
| c) Wire              | Al, Al-alloy         | Current flow                                              |
| d) Ceramic substrate | Ceramics with Cu, Al | Electrical insulation<br>Current flow<br>Thermal transfer |
| e) Solder            | Sn-alloy             | Mechanical joint<br>Current flow<br>Thermal transfer      |
| f) Base plate        | Cu                   | Thermal transfer<br>Housing                               |
| g) Terminal          | Cu                   | Current flow                                              |
| h) TIM               | Silicone, epoxy      | Thermal transfer                                          |
| i) case, cover       | Engineering plastic  | Housing<br>Holding the terminals                          |

![](_page_11_Picture_1.jpeg)

#### **Transmission and distribution**

HVDC

Long-distance transmission through uninhabited areas

![](_page_11_Picture_5.jpeg)

## **Renewables**

Installed in harsh environments Offshore wind, Floating Solar, SPS in desert ESS in uninhabitable areas, etc

## <u>Railway</u>

Expansion of coverage area Expansion of vehicle variants Installation of inverters outside the vehicle

## **Automotive**

Expansion of coverage area Expansion of vehicle variants

*Industrial, Home appliance* Expansion of coverage area

## power modules are expanding their applications coming into use <u>outdoors</u> and <u>in harsh environments</u>

01 Introduction

![](_page_12_Picture_1.jpeg)

## Power modules are beginning to be used outdoors and in harsh environments

![](_page_12_Figure_3.jpeg)

## What impact does humidity have?

## Demands for "NEW" reliability

#### <u>Test & models</u>

Failure Mechanism Accelerated testing Lifetime prediction and modelling

## **Power chips**

Highly protective materials Additional protection Highly robust structure

## Package

Highly protective materials Additional protection Highly robust structure

![](_page_13_Picture_0.jpeg)

## Tests and Models

H3TRB Test

02

![](_page_14_Picture_2.jpeg)

<u>**H**</u>igh <u>**H**</u>umidity <u>**H**</u>igh <u>**T**</u>emperature <u>**R**</u>everse <u>**B**</u>ias (H3TRB) test

| 1000hr                                                                           |                  |
|----------------------------------------------------------------------------------|------------------|
| 85°C, 85%rH                                                                      |                  |
| 80% (V <sub>CE max</sub> , V <sub>DE max</sub> , V <sub>R max</sub> ), max $80V$ | IEC 60749-5:2017 |

without depending on the blocking voltage of the devices!

![](_page_14_Picture_6.jpeg)

<u>**T**</u>emperature <u>**R**</u>everse <u>**B**</u>ias (HV-H3TRB) test

| High bias voltages must be applied       |
|------------------------------------------|
| considering the <u>real</u> environment. |

| 1000hr                                      |                                        |                         |                      |                                            |                                                                            |
|---------------------------------------------|----------------------------------------|-------------------------|----------------------|--------------------------------------------|----------------------------------------------------------------------------|
| 85°C, 85%rH                                 |                                        |                         |                      |                                            |                                                                            |
| variant 1Varian80V80%                       | n <u>t 2</u><br>(V <sub>CE max</sub> , | V <sub>DE max</sub> , V | ( <sub>R max</sub> ) | ECPE Guide<br>Qualification<br>Power Conve | eline AQG324<br>of Power Modules for Use in<br>rter Unit in Motor Vehicles |
| Voltage class                               | 1700V                                  | 3300V                   | 4500V                | 6500V                                      |                                                                            |
| HV-H3TRB test                               | 1000V                                  | 1950V                   | 3000V                | 3900V                                      |                                                                            |
| U <sub>n</sub> Nominal line voltage         | 750V                                   | 1500V                   | -                    | 3000V                                      |                                                                            |
| Umax1 Highest permanent DC catenary voltage | 900V                                   | 1800V                   | -                    | 3600V                                      |                                                                            |
| Umax2 DC catenary voltage                   | 1000V                                  | 1950V                   | -                    | 3900V                                      | ECPE Guideline PSARRA01                                                    |
| Umax3 Highest temporary<br>over-voltage     | 1270V                                  | 2540V                   | -                    | 5075V                                      | Railway Applications H3TRB tests<br>for Power Semiconductor                |

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_16_Picture_1.jpeg)

## 1. Electro-chemical metal corrosion

## Electro-chemical migration (ECM)

 $\boldsymbol{\bigstar}$  Dendritic metal growth from the anode

![](_page_16_Picture_5.jpeg)

## Aluminum Corrosion

✤Al electrophoresis into the passivation layer

Delamination of the passivation layer due to generated gases

![](_page_16_Picture_9.jpeg)

## **Stress factor**

- ✓ Relative humidity
- ✓ Temperature

No interactions between the stresses

✓ Voltage

## Acceleration factor : advanced Peck's model

$$a_{f}(RH,T,V) = \left(\frac{RH_{a}}{RH_{u}}\right)^{x} \cdot exp\left(\frac{E_{A}}{k} \cdot \left[\frac{1}{T_{u}} - \frac{1}{T_{a}}\right]\right) \cdot \left(\frac{V_{a}}{V_{u}}\right)^{y} \qquad \stackrel{RH : relative humidity}{\stackrel{T : temperature (K)}{\underset{k : Boltzmann's constant}{\underset{V : voltage (V)}{\overset{K : Boltzmann's constant}{\overset{K :$$

1) Zorn, C., Kaminski, N., et al. : "Acceleration of Temperature Humidity Bias (THB) Testing on IGBT Modules by High Bias Levels", IEEE 2015, 02

![](_page_17_Picture_2.jpeg)

![](_page_17_Figure_3.jpeg)

![](_page_18_Picture_1.jpeg)

19

![](_page_18_Figure_2.jpeg)

![](_page_19_Picture_0.jpeg)

# 03 Chip Design

Edge Termination

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_20_Figure_3.jpeg)

4) Honda, S., Harada, T., et al. : "High Voltage Device Edge Termination for Wide Temperature Range Plus Humidity with Surface Charge Control (SCC) Technology", Proc. ISPSD 2016,

![](_page_21_Picture_0.jpeg)

![](_page_21_Figure_2.jpeg)

#### Lower leakage current under high temperature

➡ The electric field distribution was balanced with the avoidance of Q<sub>ss</sub> accumulation

![](_page_22_Picture_0.jpeg)

## 04 Package

Silicone Gel and Passivation

![](_page_23_Picture_1.jpeg)

#### <u>Package</u>

Highly protective materials

- Silicone gel : Dielectric polarization
- Passivation material : Qss accumulation

Additional protection

Highly robust structure

![](_page_23_Picture_8.jpeg)

| sample                | materials    |             |
|-----------------------|--------------|-------------|
|                       | Silicone gel | Passivation |
| Type A (conventional) | А            | А           |
| Туре В                | В            | В           |

HV-H3TRB test :

Ta=85°C / 95%RH, V<sub>CE</sub>=4000V(DC), VGE=0V

|          | Type A<br>(n=5) | Type B<br>(n=4) |
|----------|-----------------|-----------------|
| DUT 1    | 18.7 hr         | 374.8 hr        |
| DUT 2    | 23.5 hr         | 565.5 hr        |
| DUT 3    | 186.1 hr        | 620.0 hr        |
| DUT 4    | 510.1 hr        | 883.8 hr        |
| DUT 5    | 572.6 hr        |                 |
| F(t)=50% | 143.4 hr        | 603.9 hr        |
|          |                 |                 |

![](_page_23_Figure_13.jpeg)

2) Tanaka, N., Ota, K., et al. : "Robust HVIGBT Module Design Against High Humidity", PCIM 2015, May 2015,

![](_page_24_Picture_0.jpeg)

## Challenges

05

New Package Concept

![](_page_25_Picture_1.jpeg)

![](_page_25_Figure_2.jpeg)

✓ High reliability

#### © 2022 Mitsubishi Electric Europe B.V. / All rights reserved

05

#### combines the best of both

topologies ✓ High reliability

![](_page_26_Figure_2.jpeg)

![](_page_26_Figure_3.jpeg)

✓ Robustness

ightarrow Vibration proof, Low air pressure proof, Corrosive gas proof

Kaji, Y., Hatanaka, Y., et al. : "Novel IGBT Modules with Epoxy Resin Encapsulation and Insulating Metal Base Plate", Proc. ISPSD 2016,
Asada, S., Kaji, Y., et al : "Resin Encapsulation Combined with Insulated Metal Baseplate for Improving Power Module Reliability, PCIM 2016,

![](_page_27_Picture_1.jpeg)

## 2. Low temperature stability

![](_page_27_Figure_3.jpeg)

![](_page_28_Picture_0.jpeg)

![](_page_28_Picture_1.jpeg)

3. Low pressure stability

![](_page_28_Figure_3.jpeg)

![](_page_28_Figure_4.jpeg)

Bubbles easily generate and move
Affected by atmospheric pressure

![](_page_28_Figure_6.jpeg)

![](_page_29_Picture_1.jpeg)

## 4. Robustness against corrosive gases

#### Conventional package

![](_page_29_Figure_4.jpeg)

## SLC (Solid Cover)

![](_page_29_Figure_6.jpeg)

![](_page_30_Picture_0.jpeg)

# 06 Summary

![](_page_31_Picture_0.jpeg)

03

The expanding use of power modules has led to demands for robustness against harsher environments.

02 The impact of humidity is particularly important and highlighted.

We focused on the edge-terminated area of the power chip and identified new failure mechanism and lifetime model.

04 High robustness against humidity is achieved with advanced chip design and packaging.

![](_page_31_Picture_7.jpeg)

Development of resin encapsulated structures for harsher and more diverse environmentals demands.

#### **Reference**

- 1) Zorn, C., Kaminski, N., et al. : "Acceleration of Temperature Humidity Bias (THB) Testing on IGBT Modules by High Bias Levels", IEEE 2015, pp. 386
- 2) Tanaka, N., Ota, K., et al. : "Robust HVIGBT Module Design Against High Humidity", PCIM 2015, May 2015,
- 3) Kitajima, Y., Hatori, K., et al. : "Lifetime Estimation Model of HVIGBT Considering Humidity", PCIM 2017, May 2017
- 4) Honda, S., Harada, T., et al. : "High Voltage Device Edge Termination for Wide Temperature Range Plus Humidity with Surface Charge Control (SCC) Technology", Proc. ISPSD 2016, June 2016, pp.291-294
- 5) Kaji, Y., Hatanaka, Y., et al. : "Novel IGBT Modules with Epoxy Resin Encapsulation and Insulating Metal Base Plate", Proc. ISPSD 2016, June 2016, pp. 475-478
- 6) Asada, S., Kaji, Y., et al : "Resin Encapsulation Combined with Insulated Metal Baseplate for Improving Power Module Reliability, PCIM 2016, May 2016

mailto : shiori.idaka@meg.mee.com

![](_page_32_Picture_8.jpeg)