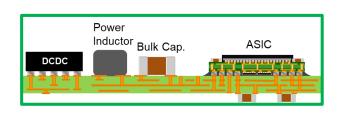


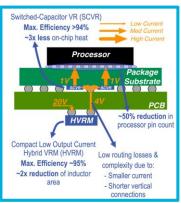
CONFIDENTIAL

High-density Nanoporous silicon decoupling capacitors

Murata Integrated Passive Solutions (MIS)

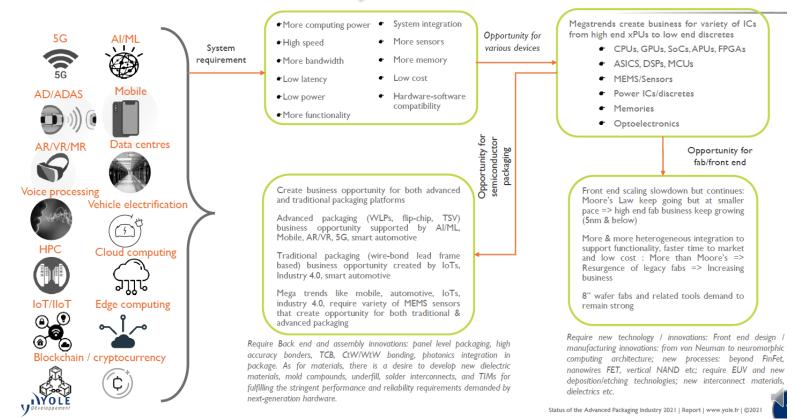
Mohamed Mehdi Jatlaoui, Ph.D Product Line Manager mohamed.jatlaoui@murata.com





Outline

- Introduction / Thoughts sharing
- II. Silicon Capacitors: 5W (Where, Who, When, Why, What)
- III. 3D Nanoporous Silicon capacitors for Power applications (PDN, iVR)
- IV. Conclusion



I. Introduction

Copyright © Murata Manufacturing Co., Ltd. All rights reserved.

CONFIDENTIAL

Source: Yole Développement

II. Murata Integrated Passive Solutions_ Where?

II. Silicon Capacitors technology_Who? When?

High Density

High Capacitance GRM Series (2.5V~100V, ~220uF)

Polymer Electrolysis ECAS Series

(2.5V~25V, ~470uF)

EDLC DMF Series (~1000mF, 4,2V)

Low ESL **LLL/LLD Series** (~4.3uF, 9.2uF)

Consumer

Factory Automation, PLC,

Industry

LED lighting, TV, Air conditioner

Smartphone, Tablet, Wearable

(25V~1kV, ~100uF) **Embedded** GRU/LLU Series 🛰 **Implant Class D GCR/GCH Series** (ISO13485)

High Reliability

Ultra Small Size GRM01/02 Series (008004, 01005)

Non Magnetic MA Series (MRI application)

Imaging Therapy, Hearing Aid, Clinic System Wind / PV Power

Metal Terminal

KRM Series

(110um~, Cu VIA Connection)

Healthcare

PA High Q

(250V~500V. 1GHz~10GHz)

Optical Transceiver

GMA/GMD Series

(Wire Bonding, Au Electrode)

GQM Series

Generation, Oil/Gas System **Energy**

RDE Series

Ultra High Voltage **DHS/DHK Series** (DC10~50kV,AC10~25kV)

High Voltage DHR Series

Automotive Grade GCM Series

(ISO9001, AEC-Q200, TS16949)

Safety Recognized **DE Series**

(13 countries Safety Approved, X2/Y1/Y2)

SNUBBER (SHIZUKI)

MIC-UV Series

(~1.200V, ~1.600uF)

(~1.600V, ~4uF)

High Power EVC Series

(~1,600V, ~4uF)

DC-LINK (SHIZUKI) MEC-DL/HV Series

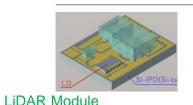
High Power Conversion

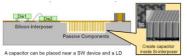
Ultra High Voltage, Communication

Wrong choice of passives can impact and limit the final application

Miniaturization

Low profile Low FSI

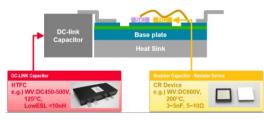



Low ESR High Reliability Mechanical strength

High Stability

II. Silicon Capacitors technology_ Where?

Optical transceivers


UBB

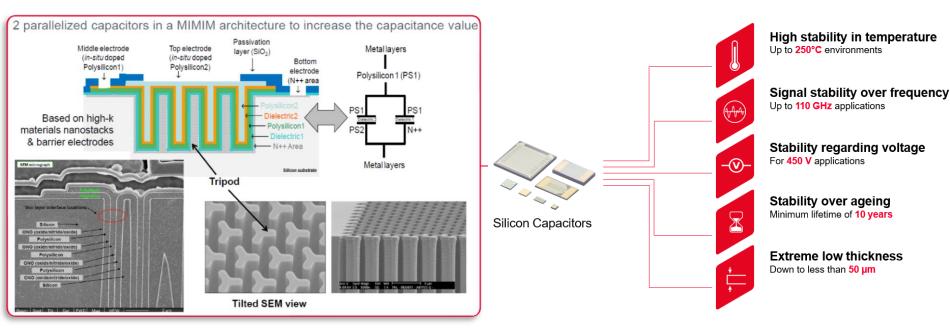
DC-DC Converter 100MHz

High voltage DC-DC Converter SiC /GaN

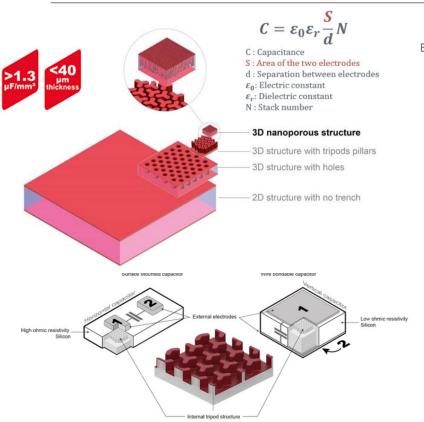
Medical/Healthcare

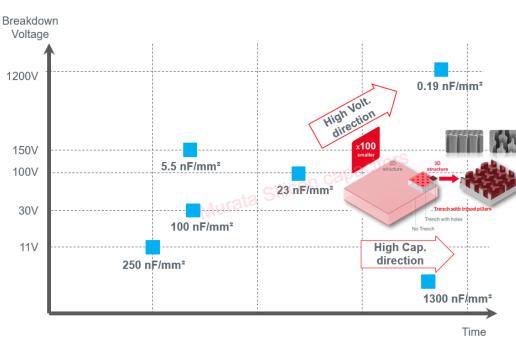
IOT & Communication

Neurostimulation module

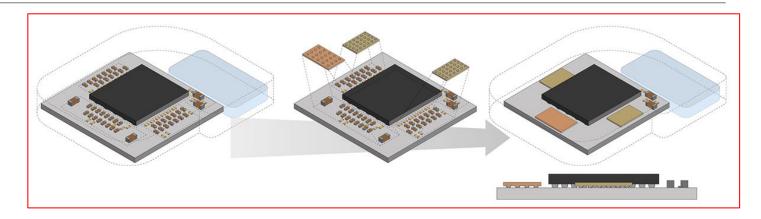


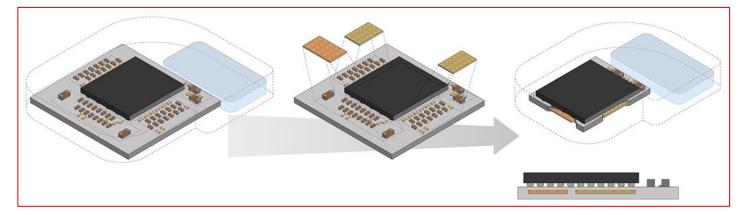
II. What's Silicon Capacitors Technology?




Murata is committed to a vision of developing innovative integrated Silicon capacitors to match the requirements and trends of SOC

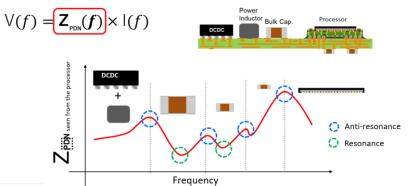
II. What's Silicon Capacitors Technology?


Silicon Capacitors extending MLCC portfolio


II. What's Silicon Capacitors Technology?

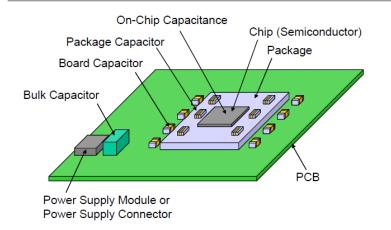
Die Side

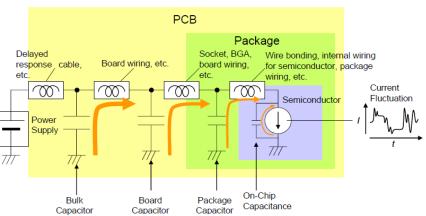
Land Side or Embedded

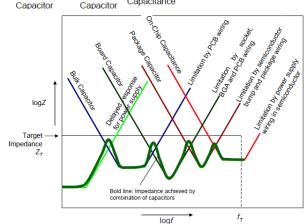


III. PDN_di/dt Mitigation

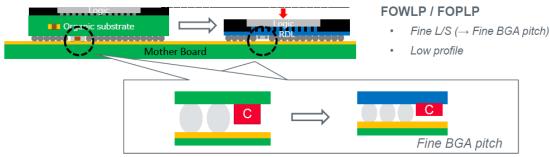
- Workloads exert excessive load transients and instability in the power supply network → variation in CPU activity may cause droop with steep slopes
- The di/dt events of CPUs induces voltage transients that need to be margined for, at the cost of power and performance
- Higher performance cores switch more current, inducing deeper droops. This impact is amplified at lower operating voltages as required by scaling trends
- → There is a need for an efficient PDN decoupling strategy



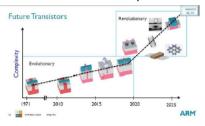

Need to take care of antiresonance and resonance to mitigate voltage noise


III. PDN_Application

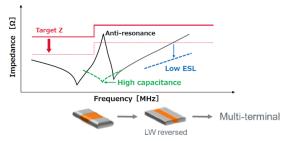
- Power supply impedance must be made small over a wide frequency range
- One capacitor cannot achieve the necessary impedance, multiple capacitors are positioned hierarchically to achieve the target power supply impedance
- Due to space constraints, on-chip capacitance is not enough to reduce impedance at high frequencies.



III. PDN_Trends and Requirements


Thickness

Low profile capacitor is needed


<u>ESL</u>

Microfabrication of process

 $10~nm \rightarrow 7~nm \rightarrow 5~nm...$

Lower target impedance

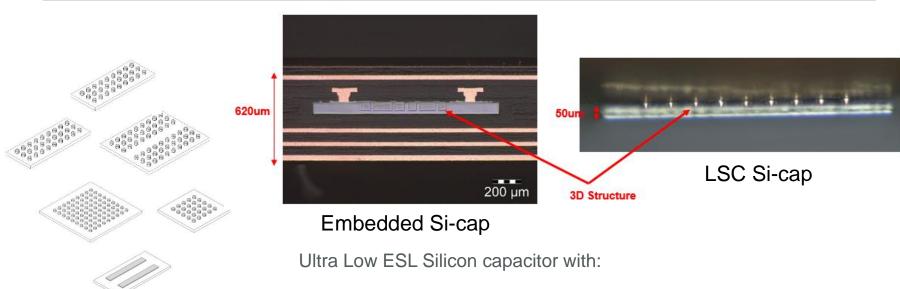
Low ESL capacitor is needed

General Trends for Mobile & HPC

- Higher functionality
- Scaling
- Increase in Power density

General requirements for PDN

- More stability & flat design
- Lower Z design at high frequency
- Lower Z design at anti-resonance

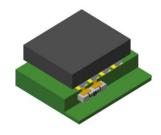

Needs for Capacitors

- Extreme Low ESL
- Extreme Low profile (Die, Terminal)
- High capacitance
- Adjustable ESR

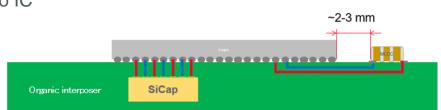
III. PDN_Murata's UESL® family solutions

- State of the art density of >1300 nF/mm² in Silicon
- 1 μF in ultra compact 0404 form factor
- Ultra-low ESL (< 5 pH) and ESR (< 5 mΩ)
- < 50 µm thickness
- Mechanical robustness

III. PDN_Benefits


Si-Caps help reducing ESL

Landside packaging


- Si-Caps intrinsic ESL is lower than MLCC
- Assembly ESL (parasitic) is reduced
 - Multi-terminals generate smaller current loop → lower ESL (shorter distance between pads)
 - Low-profile enables integration closer to IC

Embedded packaging

Ability to reduce substrate X/Y size

Source:https://www.murata.com/eneu/products/capacitor/siliconcapacitors/ov erview/medical

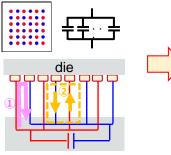
Decoupling cap	Parasitic from assembly	Cap intrinsic ESL	Conclusion
MLCC die-side	High ESL high distance - Underfill	High ESL	Standard
SiCap embedded	Low ESL close to IC	Low ESL Multi-terminals Adjacent opposite loops	Improvement

III. PDN_Multi-terminal and array structure

Multi-terminal is important to get low ESL.

Array structure offers high flexibility for PDN design

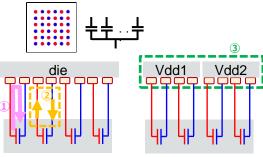
Surface

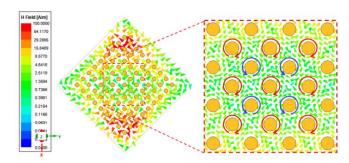

Current

1GHz

distribution @

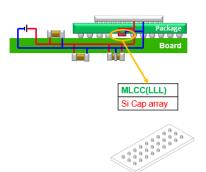
Two-terminal Two-terminal die die pin Capacitor + current path current direction -29.6446 24.5935 22.0680 19.5424

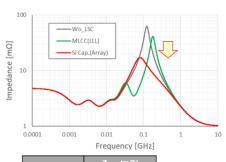

Multi-terminal


- Loop decrease(1)
- Counteract electromagnetic wave(2)
- →Low ESL in capacitor Low inductance of wire

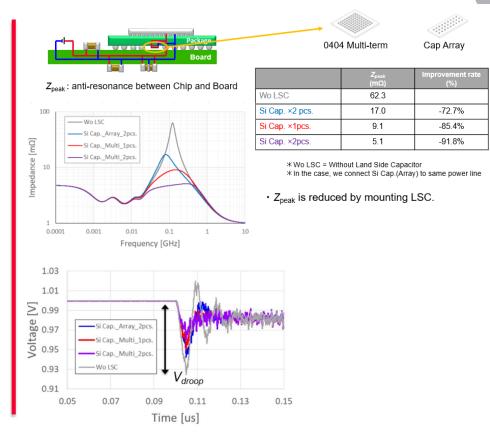
Magnetic field distribution @ 1GHz

Array structure

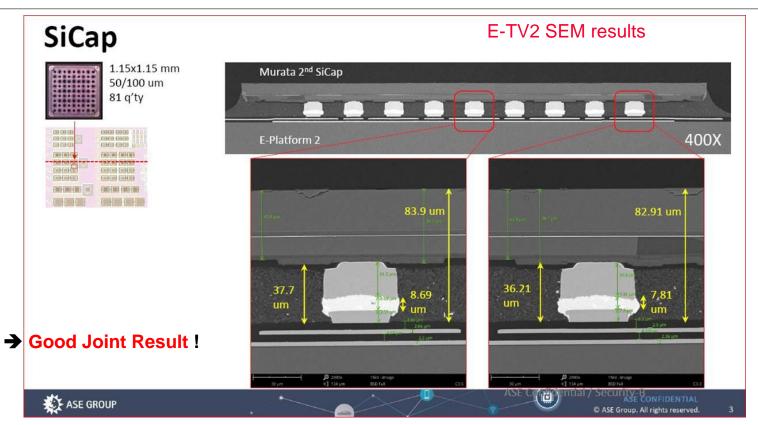

- Loop decrease(1)
- Counteract electromagnetic wave(2)
- →Low ESL in capacitor Low inductance in wire
- Capability to connect different power domains(3)
- →Flexibility of AP design



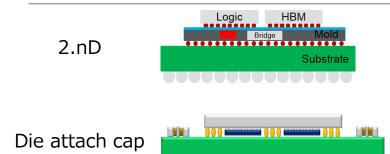
III. PDN_Si-caps improve system performance



	Z_{peak} (m Ω)	
Wo LSC	62.7	
MLCC(LLL)	41.2	-24.2 mΩ
Si Cap.(Array)	17.0	


- Abrupt changes in processor activity induce large current transients in the power delivery network
- There is a need to reduce losses → provide better and more granular regulation to the processor cores

III. PDN_Assembly evaluation

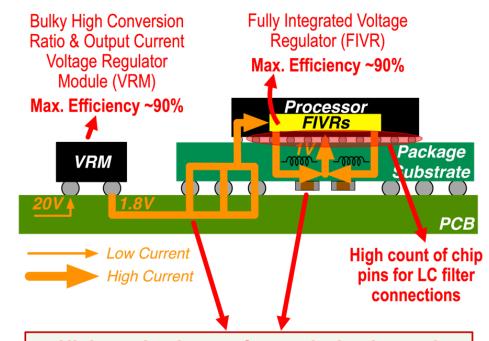


III. PDN_Advanced packaging

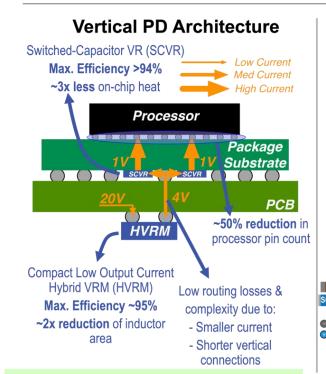
Power Integrity can be improved using specific cap:

- DC~1MHz Standard (High capacitance)
- 0.1 MHz Multi-terminal (Low inductance)
- 25 MHz Package Cap (Thin and Embedded cap)
- 100s MHz Si Multi-terminal 3D cap

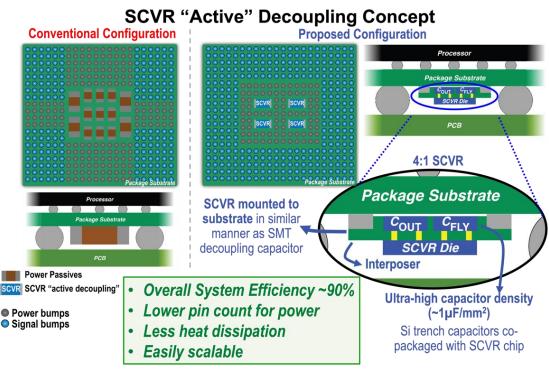
III. iVR_Traditional Power Delivery



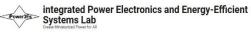
Prof. Hanh-Phuc Le and his team



- High routing losses & complexity due to the lateral distribution of very high currents
- Overall System Efficiency ~80%


III. iVR_ Approach based on Two-Stage Vertical PD and Management with Heterogeneous 3D Implementation

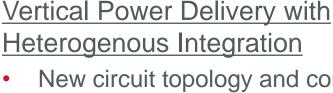
- ~2x reduction in package PDM pins
- 4x interconnect loss reduction:
- ~1.5x increase in available data IO pins.



Confidential – Unpublished materials!

Global Research Collaboration

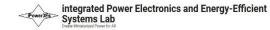
III. iVR_ New Approach



UC San Diego

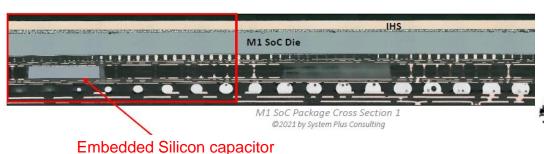
Prof. Hanh-Phuc Le and his team

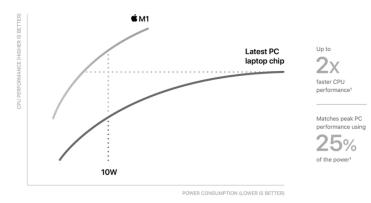
Unpublished Materials Will be published at ISSCC Feb. 2023


Confidential – Unpublished materials!

- New circuit topology and control
- Switched capacitor for the last stage
- Integrated passive devices (IPDs)
- $>1 uF/mm^2$
- Silicon interposer for packaging
- Target: 2 A/mm²
- 87% total efficiency, with 94% for HVRM and ~93% for SCVR
- Accepted to ISSCC 2023

VI. Conclusion_On-package Si-cap for CPU




Source: https://www.apple.com/fr/newsroom/2020/11/apple-unleashes-m1/

4 Land Side + 6 Embedded Silicon capacitors

Source: SystemPlus consulting

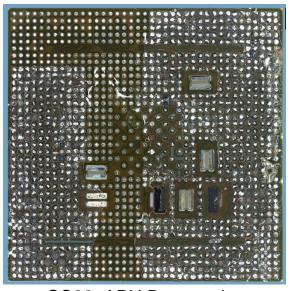
CPU performance vs. power

DRAM memory

M1 Processor Die

M2 Processor Die

SYSTEMPlus


Bottom Package
Silicon Capacitor

Silicon Capacitor

VI. Conclusion_ On package Si-cap for APU

GS22_APU Bottom view

Source: SYSTEMPlus

Silicon capacitors → enabling innovation and push the limits

Thanks a lot for your time and attention!

Contact: mohamed.jatlaoui@murata.com

