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Study Background

• Previous high dV/dt MLCC testing was limited to 30V/ns and 500V using silicon mosfets.

• In this work the internal charging current stresses induced by higher dV/dt pulses in low 
capacitance, high voltage rated MLCCs (> 500 VDC) used as snubbers in Wide Band 
Gap(WBG) device switching cells was studied.

• Packaging snubber capacitors close to WBG device improves performance, ultimately 
being most effective packaged inside power modules.  MLCCs were tested with high dV/dt 
stress at 150 C to replicate power module conditions as well.
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Base Metal Electrode (BME) MLCC Construction 

Voltage rating depends on Ceramic dielectric thickness (breakdown E field strength )

Thicker dielectrics, wider plate separation are required for higher voltage capacitors.

C = Design Capacitance

K = Dielectric Constant

A = Overlap Area

d = Ceramic Thickness

n = Number of Electrodes

C = e0KA(n-1)

d
CT=C1+C2+C3+….Cn
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Length View Electrodes in  Dielectric End Termination View

Internal Construction
C0G 1206 470pF 630V Standard Electrode (C1206C471JBGAC) 

Top View Parallel Plate Capacitor

Standard design 

1 Active ( parallel plate capacitor overlap) sees full dV/dt across terminals
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Length View Electrodes in  Dielectric End Termination View Top View Parallel Plate Capacitors

2-serial design 

Two Actives in  series  each see ½ of the  dV/dt across terminals
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Internal Construction
C0G 1206 100pF 2000V 2-Serial Electrode (C1206H101JGGAC)
C0G 1206 68pF 2000V 2-Serial Electrode (C1206H680KGGAC)

Thicker dielectric, smaller plate area 



Experimental Inductive Double Pulse Test Setup

Power Loop Lumped Inductance L power and WBG Switch Coss  resonate 

Mike Zhu, “Switching Fast SiC FETs with a Snubber” UnitedSiC_AN0018 Application Note –

November 2018. www. Unitedsic.com
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dV/dt of 70 V/ns, Vovershoot of 1.47 kV, and loop resonant frequency of approximately 580 MHz.
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Measured Results
Double pulse waveform probed across drain to source of a  UnitedSiC prototype 2 kV/60 mΩ discrete SiC FET switching 
1200 V, 25 A with no snubber



No degradation in Cap DF or IR  to catalog limits after 10 million pulses for 5 samples

UnitedSiC SiC FET User Guide” Feb 2020, https://unitedsic.com/guides
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Measured Results
2 kV/60 mΩ discrete FET switching 1200 V, 25 A; C1206H101JGGAC 100pF 2000V snubber capacitor with dV/dt of 52 V/ns, 
Vovershoot of 1.43 kV, oscillation frequency of approximately 440 MHz at a pulse repetition rate of 120 Hz.

Recommended snubber  cap value Cs is 100pF ~ 3 X  FET Coss value  (35pF ) in series Rs value of 5 Ω 



No degradation in Cap DF or IR  to catalog limits after 500 thousand pulses at 150°C for 5 samples 

dV/dt across MLCC in chamber at 25 C measured with  differential probe ~ 50V/ns . 
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Measured Results
UF3C120040K4S switching 800V 50A ~ 140pF total snubber capacitance. 
Two series RC snubbers using a C1206H680KGGAC7800 68pF 2000V 200°C in series with 10 Ω Rs one on  double pulse 
board and a second on a separate test board across output inside Chamber. A slow 10 Hz pulse repetition rate was used



No degradation observed in Cap DF or IR  to catalog limits after 10 million pulses for 5 samples 
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Measured Results
UF3C120040K4S switching 500 V 50 A with C1206C471JBGAC and Rs 3.3 Ω  dV/dt is approximately 50 V/ns at 120 Hz 
pulse repetition rate



Charging Current Density Calculation

Charge ( Qactive ) = Cactive⋅V

(dQactive)/dt = Cactive⋅dV/dt

Current ( Iactive ) ~ Cactive⋅dV/dt

Ielectrode ~ 2⋅Iactive

Current Density (Jelectrode ) = 2* Cactive*(dV/dt) /(W⋅th)

where W is the electrode width ~ 1mm and th is the electrode thickness ~ 1.5 um. 

Cross-sectional Area of 1.5E-3 mm2

Design
Cap 
Per 

Active
dV/dt

Charge (Q) 
per Active

Current (I) 
Per Electrode

Current Density 
(J) Per 

Electrode

pF V/ns Coulomb A A/mm2

C1206H101JGGAC 10 25 2.5E-10 0.5 330

C1206C471JBGAC 30 50 1.5E-9 3.0 2000

No degradation in Cap DF or IR  to catalog limits 
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ANSYS® Maxwell® 3D Model Cut plane in center for 2D current density and electric field plots 
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ANSYS® Maxwell® 3D  Simulation
C1206H101JGGAC conduction current density, JC, in termination and electrodes and displacement current density, JD, in 
dielectric at 90 MHz 270 V peak to peak oscillation condition.  Maximum electric field in dielectric at end of the electrodes at
peak overshoot voltage 1500V



ANSYS® Maxwell® 3D Model Cut plane in center for 2D current density and electric field plots 
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ANSYS® Maxwell® 3D  Simulation
C1206C471JBGAC conduction current density, JC, in terminations and electrodes and displacement current density, JD, in 
dielectric at 33MHz 260 V peak to peak oscillation  condition . Maximum Electric Field in dielectric at end of the electrodes at
peak voltage 630 V



• The experimental results show both the 2-serial and standard designs are not degraded by
high dV/dt switching transients.

• The higher voltage 2-serial electrode designs with lower cap per active, have lower
transient current density and lower electric field stress from modeling.

• These low capacitance, high-voltage and high-temperature capable C0G MLCCs can be
effectively integrated as snubbers in WBG power modules.

Conclusions
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