

Emerging Power Electronics Packaging and System Integration for Automotive Applications

Mahadevan (Devan) Iyer I VP, Power Products

3D PEIM February 1-3, 2023

Amkor by the Numbers

*2021 results

Amkor Automotive by the Numbers

Agenda

- 1 Introduction System Integration Applications & Market Trends
- 2 Automotive Power Electronic System Integration
- **3** Power Discrete Packages Trends and Needs
- 4 Power Modules for EV Systems

5 Summary

and a second sec

Concession of the local division of the loca

an jan jaman pangan sebagai sebagai kan sebagai kan sebagai kan sebagai sebagai sebagai sebagai sebagai sebagai mangan pangan sebagai s mangan sebagai s

Introduction – System Integration Applications & Market Trends

System Integration Applications & Market Trends

Applications in Automotive

- Connectivity & communications ECO mobility
- Processors, ADAS, Autonomous driving sensors
- Electric drive train power electronics
- Integration, electrical & thermal management and reliability

Applications in industrial automation

Source : McKinsey Analysis Reports

System Integration Applications & Market Trends

Applications in biomedical devices & instrumentation

System Integration Applications

Research driven by system advancements & integration needs

Smart health: Wireless sensing, THz radios, edge analytics, machine learning Personal experiences: Sensing system, renewable energy, machine vision, cybersecurity **Automated vehicles: Multi-sensing, advanced power system integration, AI, THz radio** Automated factories: Sensors, design automation, AI hardware/process automation Computing systems: Digital AI cores, analog AI cores with optimized materials, algorithms dev + hardware, heterogenous integration

Amko

and a second sec

and the second second

Automotive Power Electronic System Integration

Power Electronics Integration in Automotive: EV Adding New Power Packaging & Modules Technologies

© 2023 Amkor Technology, Inc. 10

Automotive Packaging

mkoi

Powertrain for EV

- Core of the powertrain
 - ▷ Creates power for CV and EV to efficiently transmit power
 - The powertrain of an electric vehicle consists of a motor that generates power, power electronics that control electric characteristics and a battery pack that stores electric energy
- Converters and inverters in EV/HEV
 - High power DC/AC inverters
 - Low/Mid power DC/DC and AC/DC converters
- High opportunities with SiC and GaN

Automotive 48V Systems: Powertrain Configurations

Auxiliary Loads

Electrification/Hybridization

Applications of EV Power Train

- Proliferation of power discrete packages
- High voltage power modules for traction inverters

Wide Bandgap (WBG) Device Advantages

Bandgap of a semiconductor is the minimum energy required to excite an electron from its bound state to a free state where it can participate in conduction. Wider bandgap better for the device performance, conductivity, efficiency, etc.

- SiC & GaN have ~3x the bandgap
- The higher the traction inverter system power and motor switching operating frequencies, the better the performance

Source: STMicroelectronics May 2022

Global Automotive Powertrain Forecast

and a second sec

and the second se

Power Discrete Packages Trends & Needs

Power Packaging Challenges

Power Packaging Drivers

Jest J	Performance	High current, high voltage, low loss/noise Thermal capacity, low R _{DS} (on), AEC Grade
	Integration	High voltage, high power modules, multi-voltage, multi tech FETs (Si FETs, Si IGBTs, GaN, SiC), stacked die, thicker wire, clip, FC solutions
	Cost	Wide strip, sintering Cu
(Ø)	Reliability	AEC-Q100/101, zero delamination, BLT control, BLR

Power Packaging: Technology Drivers

Power Architecture

- Power block: 2x FET
- Power stage: 2x FET and driver IC
- Power module: + passives

Power Packaging Drivers: PQFN Overview

- Standard package platforms
 - Discrete FETs
 - Dual FETs
 - Stacked FETs
- Interconnection technology
 - ▷ Cu clip/Cu wire
 - Al wedge bond
 - Cu clip/Cu clip
 - Wire/Cu clip combination

Package Integration in Power Semiconductors

- Vectors for discrete and integrated power
 - ▷ Low resistance/inductance
 - Dual-sided cooling
 - Reduced form factor
 - Add controller/logic/passive

Gaps

- High density packaging
- Universal formats for discrete and integrated use

Power QFN Structure – Power Stage

DC/DC Converter

► Dual N-channel, 25V MOSFET

Power Packaging Trends: Integration Paths

Power Packaging Drivers: Evolution of PQFN/PMIC Integration

- Multi-die
- Clip and wire capable
- Stacked MOSFET or side by side
- Cu to Cu process

- Integrated inductor and passives for electrical efficiency
- Uses exposed Cu from clip

- Reduce inductor electrical path
- ► Form factor reduction
- Auto/Mobile/Network markets

Amkor Power Package Solutions

High Thermal Epoxy Mold Compounds(EMC)

- ► 3 approaches to high thermal EMC
 - Improved heat resistance for high operating temp
 - Low stress for stress relief of die
 - High thermal conductivity for high operating temp

1979 - Charles and a second or set of a second seco

Law and

Power Modules for xEV Automotive Systems

High Power Modules

- Highly customized solutions
- All trending towards similar architecture
 - Leadframe + DBC/ceramic
 - Soldered/Sintered components
- Applications
 IGBT, SiC, GaN
 Invertors
 - Inverters
 - ▷ DC/DC

IGBT Module – Traction Inverter

► VE-Trac, IGBT module, 750V

SiP Power Module

600V SiP integrating half bridge gate driver and high voltage power GaN transistors

Source: STMicroelectronics. MASTERGAN1 Data Sheet

Source: SYSTEMPlus, 2020

SiC Power Module for Automotive

(\$ in millions)

and a second sec

and programming and part of the programming and the programming and programming

Est.

Automotive Power Package Trends – Summary

- Si → WBG
 - ▷ SiC, GaN
- ► Solder → sintering material
 - Better thermal performance, higher reliability, lower resistance
- ► Wirebond \rightarrow clip
 - Lower inductance, high current capacity
- One sided → double sided cooling
 ▶ High thermal dissipation
- Single die package → power modules system integration

Thank You

